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Abstract

A framework for studying the evolution of cooperative
behaviour in a random environment, using evolution
of finite state strategies, is presented. The interac-
tion between agents is modelled by a repeated game
with random observable payoffs. The agents are thus
faced with a more complex situation, compared to the
Prisoner’s Dilemma that has been widely used for in-
vestigating the conditions for cooperation in evolving
populations (Matsuo 1985; Axelrod 1987; Miller 1989;
Lindgren 1992; Ikegami 1994; Lindgren & Nordahl 1994;
Lindgren 1997). Still, there are robust cooperating
strategies that usually evolve in a population of agents.
In the cooperative mode, these strategies selects an ac-
tion that allows for maximizing the payoff sum of both
players in each round, regardless of the own payoff. Two
such players maximize the expected total long-term pay-
off. If the opponent deviates from this scheme, the strat-
egy invokes a punishment action, which aims to lower
the opponent’s score for the rest of the (possibly in-
finitely) repeated game. The introduction of mistakes
to the game actually pushes evolution towards more co-
operative strategies even though the game becomes more
difficult.

Cooperation can be characterised as an interaction
where agents refrain from taking short-term profit and
instead act in a way that allows for a larger long-term
gain. In this sense, cooperative behaviour may be seen
at several levels in natural systems. As discussed by
Maynard-Smith and Szathmáry (1995), cooperation may
be one crucial factor for the major transitions that has
occurred in the evolution of life on Earth — the creation
of the more complex eukaryotic cell, the formation of
multi-cellular organisms, the appearance of social ani-
mals, etc. In these transitions, previously separately re-
producing components form a new self-reproducing en-
tity, in which the different parts may have specialised
roles.

In the field of Artificial Life, we have the opportunity
to create models that allow for such major evolution-
ary transitions, but so far they seem to be missing in
the models studied. One approach to get an increased
knowledge about how such transitions may appear is
to investigate under what circumstances cooperative be-

haviour may be advantageous for a replicating entity,
and how cooperation may be achieved. During the past
two decades there have been a large number of papers
discussing the evolution of cooperation in the perspective
of the Prisoner’s Dilemma game. The work by Axelrod
(1984) was a starting point for a series of papers putting
an evolutionary perspective to how cooperation is estab-
lished. The main conclusion from the initial work was
that cooperation could be established if interactions be-
tween individuals are repeated. A large number of modi-
fications and extensions of the PD was tried to firmly es-
tablish the fact that cooperation is possible under a wide
variety of circumstances (Matsuo 1985; Molander 1985;
Axelrod 1987; Boyd & Lorberbaum 1987; Boyd 1989;
Miller 1989; Lindgren 1992; Nowak & May 1993; Stan-
ley & Tesfatsion 1993; Ikegami 1994; Lindgren & Nor-
dahl 1994; Nowak & El-Sedy 1995; Wu & Axelrod 1995;
Lindgren 1997).

The possibility for a cooperative equilibrium to be es-
tablished in a repeated game has long since been well
known in game theory. The Folk Theorem states that
in a repeated game, with sufficiently low probability for
the game to end, any possible score above the min-max
payoff can be supported at equilibrium by some strat-
egy (Fudenberg & Tirole 1991; Binmore 1994). Such an
equilibrium is kept by punishing those who deviate from
the equilibrium strategy. One example of punishment is
to minimise the possible score for the opponent in the
present round.

One of the main limitations with the Prisoner’s
Dilemma game and many of the similar games studied
is the static character of the interaction situation. Each
time two individuals encounter each other, the situation
is identical to the previous one, i.e., the payoff values for
the different choices are unchanged. In a real situation,
it may be much more common that they meet each other
in different situations most of the time; some situations
may be of the Prisoner’s Dilemma type, other situations
may be easy, so short-sighted profit maximisation coin-
cides with the cooperative maximal payoff.

The advantage with the PD game is its simplicity, al-
lowing for various extensions that investigate different
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characteristics of cooperative behaviour in simple mod-
els. Our aim with the current research is to keep the sim-
plicity at the same time as the situation in which agents
meet are less static. Therefore we generate a completely
new random payoff matrix for each round in a repeated
two-player game, but the players still have full informa-
tion on the current payoff values for the different actions
and players.

The questions are: How can cooperation emerge?
What will it look like? Under what circumstances is it
stable? In order to investigate possible answers to these
questions, we have constructed an evolutionary model
in which strategies replicate and mutate, with a replica-
tion rate depending on the score achieved in the game.
Two types of dynamics are studied. First, in the mixed
population, all interact with all and second, in the spa-
tially extended model, interactions are restricted to the
four nearest neighbours. We also study the effect of mis-
takes, as it is a complication for cooperation, and to what
extent strategies may evolve to take care of this.

The random payoff game

The repeated random payoff game used in this study
is a two-person game in which each round is character-
ized by two possible actions per player and a randomly
generated but observable payoff matrix. The payoff ma-
trix elements are random, independent, and uniformly
distributed real numbers between zero and one. New
payoffs are drawn every round of the game.

In the single round game a player performs a certain
action that may depend on the observed payoffs. There-
fore, the single round game can be characterised by its
Nash equilibria (NE), i.e., a pair of actions such that if
only one of the players switches action that player will
reduce her payoff1.

There are a number of simple single round (elemen-
tary) strategies that are of interest in characterising the
possible types of behaviour. Assume first that there is
exactly one NE, and that rational (single round) players
play the corresponding actions. The payoff in this case
is max(x, h), where x and h are independent uniformly
distributed stochastic variables between zero and one,
and this results in an expectation value of 2/3 ≈ 0.667.

Let us define a strategy “NashSeek” as follows. If
there is only one NE in the current payoff matrix, one
chooses the corresponding action. If there are two NE,
one aim for the one that has the highest sum of the two
players payoffs, while if there is no NE, one optimistically
chooses the action that could possibly lead to the highest
own payoff.

A second strategy, “MaxCoop”, aims for the highest

1Since agents cannot randomise their actions, we only con-
sider pure strategy Nash equilibria. Depending on the payoffs
there are either zero, one, or two pure NEs in this game, ap-
pearing with probabilities 1/8, 3/4, and 1/8, respectively.

sum of both players’ payoffs. If two such players meet,
they score max(x1+h1, x2+h2, x3+h3, x4+h4) together,
where xi and hi are independent uniformly distributed
stochastic variables between zero and one, and this re-
sults in an expectation value of sC = 3589/5040 ≈ 0.712.

A third more optimistic and greedy strategy is “Max-
Max”, which selects the action that makes it possible to
get the highest score provided that the opponent acts
accordingly. Finally, we have also chosen to include a
strategy that is punishing the opponent. The strategy
Punish selects the action that minimizes the opponent’s
maximum payoff.

In an evolutionary model based on a round robin tour-
nament for determining the fitness (based on the score
of all pair-wise single round games) it is clear that Nash-
Seek will take over sooner or later. If we extend the
game, so that there is a high probability that players
will encounter each other repeatedly in new situations
(new random payoffs), other possibilities may appear.
This requires, though, that the players may use compos-
ite strategies that in some way take into account what
has happened before in the interaction with the same
opponent.

A straightforward approach is to define composite
strategies represented by deterministic finite state au-
tomata (FSA) (Miller 1989; Nowak & El-Sedy 1995;
Lindgren 1997), in which a state corresponds to a certain
elementary strategy as described above. From one round
of the game to the next, a player may switch to a different
internal state (and different type of behaviour) depend-
ing on what happened in the previous round. The oppo-
nent’s action is classified in terms of the basic strategies,
and it is checked whether the action is consistent with
any of the elementary strategies. Different composite
strategies will then react in different ways to the inter-
preted behaviour of the opponent. See Figure 1 for a
sample strategy.

Mixed population dynamics

We consider a population of N agents, competing for
the same resources. The population is at the limit of the
carrying capacity level of the environment, so the num-
ber of agents N is fixed. In each generation, the agents
play the repeated stochastic payoff game with the other
agents, and reproduce to form the next generation. The
population evolves according to the ordinary replicator
dynamics (Taylor & Jonker 1978): the score for every
composite strategy is compared to the average score of
the population, and those above average will get more
offspring, and thus a larger share in the next generation.

In the simulations of the model, in a few thousand gen-
erations, the average score of the population increases to
a level corresponding to the single round Nash equilib-
rium. The evolution later on continues with a fast tran-
sition to the level of the MaxCoop score, indicating that
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Figure 1: Mutation of a composite strategy into an
equivalent strategy with an extra internal state is shown,
from the parent (a) to the child (b). The letters in the
nodes denote the elementary strategies MaxCoop (C)
and NashSeek (N), and the black circle indicates the ini-
tial state. Depending on the interpretation of the op-
ponent’s previous action, the composite strategy may
switch internal state. The transition **T* applies only
when the opponent’s action is consistent with MaxCoop
(the third elementary strategy), but does not care about
the other elementary strategies. The transition rule **F*
is applied when the opponent does not follow the Max-
Coop strategy. This composed strategy is similar to the
Tit-for-tat strategy discussed in the context of the iter-
ated Prisoner’s Dilemma in that it cooperates by play-
ing MaxCoop if the opponent played according to Max-
Coop in the last round, otherwise it ‘defects’ by playing
NashSeek. There are several different ways to change
a strategy by mutations: by adding or removing states,
changing the connectivity of the states, or by changing
the actions in the states. Shown here is addition of a
new state, by duplicating the grey node in such a way
that the strategy’s play is unchanged.

a mechanism for avoiding the shortsighted single round
Nash seeking behaviour has evolved. As is seen in Figure
2, showing a typical evolutionary pattern after the ini-
tial transient, the population does not seem to be able to
stabilize on the cooperative level, but there are several
sharp drops in the score when mutant strategies manage
to take a more substantial part of the population. In
some cases the score is brought down to the level of the
Nash seeking strategy again.

When the population switches to the level of the Max-
Coop score it is dominated by cooperating strategies that
punish deviators like the Nash seekers. This results in
the near extinction of the Nash seeking strategies, which
means that the punishment mechanism is not needed
any longer. Therefore, mutants that are cooperative but
have lost the capability to punish may survive and may
in some cases even have an advantage, since it may be
costly to punish, depending on the exact mechanism. In
Figure 2 it is clearly seen that the fraction of composite

strategies that keep the punishment mechanism oscil-
lates irregularly. If the fraction of punishers is too low
the population becomes vulnerable to invasion by Nash
seekers. If Nash seekers become common, cooperating
strategies with punishment again has an advantage and
the process repeats.

Under what circumstances could the cooperative level
be stabilised? If the situation is changed so that mu-
tants that have lost their punishment mechanism have
a disadvantage, it should be possible to achieve a stable
cooperating population. One situation in which this may
happen is when noise in the form of mistakes is present
in the repeated game.

We model mistakes as a probability ρ of taking the
action opposite to the intended one. Since we consider
infinite games, even a very small chance of mistakes has
a huge impact on the overall payoffs and how the strate-
gies evolve, even when the effect on the expected payoffs
in the single round games are negligible (this effect is ap-
proximately proportional to ρ). Strategies that punish
deviations from a mutual elementary strategy must now
take the possibility of mistakes into account (Lindgren
1992). A pair of strategy like the one in Figure 1a, for
example, will perform much worse since it will play Nash-
Seek much more often. Especially when playing against
itself, it will inevitably end up with long sequences of
mutual “defects” when both players play NashSeek, and
they will only get back on the cooperating track again
(playing MaxCoop) if new mistakes occurs. It is thus
essential that the players have some way of recovering
from unintentional actions, from both parties. To this
end, the players now monitor their own actions, as well
as the actions of the opponents.

A player still cannot detect when the opponent makes
a mistake, but by “apologising” after a mistake in some
appropriate way (e.g. by playing MaxCoop) the long run
cooperation might be preserved. This mechanism may
leave the player open for greedy players to make use of it,
though, so it is more complicated to find an appropriate
mechanism.

It is clearly seen in Figure 3, that in the case of mis-
takes the population stabilises in the cooperative mode.
Since cooperation now requires both a punishment mech-
anism to avoid exploiting strategies and a mechanism for
restoring cooperation after a mistake, it takes a longer
time before cooperation is achieved. It should be noted
that there is no single simple mechanism present in the
cooperative population, but the dominating strategies
can be characterised as forgiving punishers. There is nei-
ther a synchronisation nor a handshaking mechanism in-
volved, as has been previously observed in the case of the
Prisoner’s Dilemma game with mistakes (Lindgren 1992;
1997). It should be noted that the mistake probability is
very low (10−4), and if the level is increased cooperation
is much harder to achieve, in the population dynamics.
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Figure 2: The figure shows a typical run of the model
illustrating how non-punishing strategies take over from
cooperating strategies with punishment, and the conse-
quent collapses due to exploiting strategies. In the top is
shown the share of players that play like MaxCoop when
meeting others with the same behaviour but punish those
that deviate from MaxCoop (thin line) and the share of
exploiters (thick line). The bottom part shows the aver-
age payoff of the population. When the average payoff
of the population is high, the share of strategies with a
punishment mechanism decreases, due to an increase of
mutant strategies without such a mechanism. Exploiting
strategies are held back by the punishments. When the
share of punishing strategies fall below a critical level,
exploiters get payoffs above the population average and
quickly come to dominate the population. This drasti-
cally lowers the population average payoff, which gives
the cooperating-punishing strategies the edge, so that
they can take over the population. This cycle then re-
peats.

A more thorough investigation of the game with mistakes
has been carried out and will be presented elsewhere.

Spatial population dynamics

In order to study the consequences of a small, local in-
teraction neighbourhood on the evolution of strategies,
we put each player on a site in a square lattice with pe-
riodic boundary conditions. The fitness of a player in a
cell is given by the average of the expected payoffs from
one by one games with its four neighbours. A cell is up-
dated by replacing the player in the cell by the player
with the highest fitness among the players in the cell and
those in the neighbouring cells. In each generation, all
cells are updated once, but the order is chosen randomly
each time. In each generation, there is a probability of
having mutations in the population, generated accord-
ing to a Poisson process with a mean of m events per
generation.

A typical run is shown in figure 4, with a mistake rate
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Figure 3: Typical runs without mistakes (top), and with
mistakes (bottom). With mistakes, it is harder for the
mutations to find a solution to the problem of cooper-
ating by playing MaxCoop when possible, while evad-
ing exploiting strategies. The mutations of the resulting
strategies are much less likely to be fit, and this imply
that it is difficult for exploitable strategies to enter the
population, as happens when there are no mistakes.

ρ = 0.01. The world is 200 by 200 cells, and the mu-
tation rate is 20 events per generation. The maximum
number of strategies simultaneously in the population is
600 strategies. In the first few generations, the popula-
tion converges to the NashSeek level. About a thousand
generations later we see the first emergence of coopera-
tion, with a short transition.

However, the cooperating strategies are easily ex-
ploited and we see a steady decline in the average payoff.
The decline is roughly linear; the rate is limited by the
mutation rate and the maximum number of strategies.
During this period, the number of strategies rises very
quickly. The mutants enter the square in small lumps,
and do not tend to increase in size but do not die out
either.

At some stage, and before the payoff reaches the Nash-
Seek level, the trend turns and the payoff starts to rise
again. As opposed to the initial, fast increase, this
climb is gradual and consists of a constant replacement
of strategies; there is typically no single strategy that
takes over a large fraction of the population.

After a few ups and downs with much smaller magni-
tude than during the transient phase, the average payoff
settles on a high level of cooperation. The payoff pCC for
the pure MaxCoop strategy is 0.7065 when the mistake
rate is ρ = 0.01, and this corresponds to the maximum
average payoff that can be stable. Note that the payoff
is between 0.705 and 0.706, so it is quite close to the
maximum level.
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Figure 4: Time evolution of the average payoffs for a
typical run. The top panel shows the initial transient,
while the lower panel shows the convergence to a high,
stable level of cooperation. The mistake rate is ρ = 0.01
and the mutation rate is 20 events per generation. Note
that cooperation emerges readily on a level of mistakes
where cooperation seems to be very hard to achieve in
the mixed populations.

We have found that the populations evolve to high
levels of cooperation, even for ρ up to and over 0.01.
The level of cooperation is decreasing with increasing
mistakes rate and discount rate, and the variation of this
level between different runs is increasing with ρ. Also
when ρ is zero, the level of cooperation is high and stable
and we do not see the kind of fluctuations present in the
simulations of the mixed population. This is consistent
with results from the literature on spatial population
dynamics in the Prisoner’s Dilemma game (Lindgren &
Nordahl 1994; Lindgren 1997).

Figure 5 shows a snapshot of the world at a given gen-
eration with different shades identifying different strate-
gies. Figure 6 shows the fitness of the players encoded
in a grey scale, given in the shaded bar to the right of
the image. Note that the mapping is non-linear; the in-
tensity of cell i is calculated as gi = 1/(pNC − fi), then
scaled to so that all intensities fit into the interval [0,1].

Summary

In summary, in the case without mistakes we find that
there are several strategies that play on equal terms with
a MaxCoop strategy that punishes exploiting strategies.
For example, strategies that by mutation lose their pun-
ishment mechanism may enter and increase their fraction
of the population by genetic drift. This in turn leads
to a population that is vulnerable to mutants exploit-
ing the cooperative behaviour, for example by strate-
gies playing NashSeek. Thus, the Nash equilibrium that
characterises the population dominated by MaxCoop-

punishment is not an evolutionarily stable one, as can
be seen in the simulations. The effect is the same as
the one in the iterated Prisoner’s Dilemma that makes
Tit-for-tat an evolutionarily non-stable strategy (Boyd
& Lorberbaum 1987; Boyd 1989).

This genetic drift is prevented by the introduction of
mistakes in the actions of the elementary strategies. The
strategies cooperating at a high payoff level have evolved
mechanisms that can simultaneously protect the players
from greedy strategies, and lead the game back to coop-
eration when a mistake occurs.

Figure 5: A snapshot of the distribution of strategies
among the players at generation 162,000. The identity of
the strategies are indicated by the different colours; there
is no further significance to the choice of colours. Note
the pattern of areas with the same strategy, interspersed
by singlet mutations.

Figure 6: The fitness values of the players at generation
162,000, corresponding to figure 5. The fitness of the
players is encoded in grey scale, given by the bar to the
right of the image.
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The evolution of a population dominated by MaxCoop
(with some punishment mechanism) is not unexpected.
A population of players (using identical strategies) can
always enforce a certain score s∗, if this score is larger
than (or equal to) the smallest punishment score sP and
smaller than (or equal to) the maximum cooperation
score sC , sP ≤ s∗ ≤ sC . This means that the population
can punish a new strategy (mutant) that enters, unless it
adopts the same strategy and plays so that the score s is
reached in the long run. This argument follows the idea
behind the Folk Theorem that appears in various forms
in the game-theoretic literature (Fudenberg & Tirole
1991; Dutta 1995). As has been seen also in experimen-
tal economics, punishment seems to be a key mechanism
for humans in order to force selfish individuals to be-
have in a more cooperative way (Fehr & Gächter 2000b;
2000a; 2002).

In the spatial setting, the players are distributed on a
lattice. We find that the possibility to reach cooperation
is greatly enhanced, compared to the mixed population
dynamics. As the mistake rate and the discount rate
increases, the average level of cooperation is decreasing,
while the variation in this level is increasing. Still, coop-
eration at fairly high levels has been observed for mis-
takes rates of 0.01.

When the mistake rate is zero, the spatial model does
not exhibit the type of fluctuation present in the mixed
population — in the spatial model, a high level of co-
operation can be maintained. This difference has been
observed also in studies of the PD game (Nowak & May
1993; Lindgren & Nordahl 1994; Lindgren 1997). A com-
mon pattern that appears is islands or regions of cooper-
ating behaviour with edges or borders of non-cooperating
strategies. When a strategy is replaced it is more often
by a strategy from the interior, i.e., by a cooperating
strategy.

The repeated game with stochastic observable payoffs
offers a simple model world in which questions on the
evolution of cooperation may be investigated. The model
captures the uncertainty about the future situations we
may find our opponents and ourselves in, and we think
this may be a useful basis for further investigations of
the circumstances under which cooperation may evolve.
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