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Abstract

We describe a model and implementation of evolution-
ary spiking neurons for embedded microcontrollers with
few bytes of memory and very low power consumption.
The approach is tested with an autonomous microrobot
of less than 1 in3 that evolves the ability to move in
a small maze without human intervention and external
computers. Considering the very large diffusion, small
size, and low cost of embedded microcontrollers, the ap-
proach described here could find its way in several intel-
ligent devices with sensors and/or actuators, as well as
in smart credit cards.

Artificial Spiking Circuits

Most biological neurons communicate by sending pulses
across connections to other neurons. The pulse is also
known as “spike” to indicate its short and transient na-
ture. Neurons are affected by incoming spikes and gen-
erate a spike when their membrane potential becomes
larger than a threshold. Spike generation is followed by
a short “refractory period” during which the neuron can-
not generate another spike.

Computational models of spiking neurons are attract-
ing increasing interest in engineering and computer sci-
ence (Maas & Bishop 1999). On the one hand, computer
simulations of spiking networks can help to address spe-
cific questions in neuroscience, such as how biological
neurons communicate with each other (Koenig, Engel,
& Singer 1996; Rieke et al. 1997). On the other hand,
a better understanding of spiking neurons is leading to
the development of new neuromorphic devices (Horiuchi
2001), some of which may replace lesioned fibers or sen-
sory organs.

In addition, we argue that networks of spiking neurons
represent suitable control systems for autonomous be-
havioral systems,1 such as situated autonomous robots,
because temporal patterns of sensory-motor events may
be captured and exploited more efficiently (i.e., with
fewer neurons or with higher probability) by the intrin-
sic time-dependent dynamics of spiking neurons than by

1They certainly showed to be excellent control systems for
biological organisms!

other connectionist models (Rumelhart, McClelland, &
PDP Group 1986).

Computational investigations of spiking neurons are
often based on biophysical models that are significantly
more complicated than models used in connection-
ism (McCulloch-Pitts, Perceptron, and Hopfield mod-
els, e.g.). These biophysical models are defined by
coupled differential equations that attempt to capture
the complex dynamics of membrane ion channels, gen-
eration and propagation of spikes, and synaptic con-
ductances, among others. A representative sample of
these models is presented in “road map” II.5 of the
Handbook of Brain Theory and Neural Networks (Ar-
bib 1998). Although such differential equations can
be directly mapped into analog VLSI circuits exploit-
ing the physics of sub-threshold transistors (Mead 1989;
Indiveri & Douglas 2000), digital implementations of
spiking networks often resort to complex simulations
(Bower & Beeman 1994) and/or comparatively larger
hardware resources (de Garis 1996).

Whatever choice of implementation, hand-design of
spiking circuits that display a desired functionality is not
a trivial task because of the highly non-linear dynamics.
Furthermore, the learning algorithms developed so far
for spiking circuits are often restricted to very simple
and application-specific architectures (Maas & Bishop
1999). The most successful results in the field of robotics
obtained so far focused on the first stages of sensory
processing and on relatively simple motor control. For
example, Indiveri et al. (2001) developed neuromorphic
vision circuits that emulate interconnections among neu-
rons in the early layers of the biological retina in order
to extract motion information and implement a simple
form of attentive selection. These vision circuits have
been interfaced with a Koala robot and their output has
been used to drive the wheels of the robot in order to fol-
low lines using a hand-designed program (Indiveri & Ver-
schure 1997). In another line of work, Lewis et al. (2000)
developed an analog VLSI circuit with four spiking neu-
rons capable of controlling a robotic leg and adapting
the motor commands using sensory feedback. This neu-
romorphic circuit consumes less than 1 microwatt and



2 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 335–344

Figure 1: A Khepera robot equipped with a linear cam-
era is positioned in an arena lit from above in order to
let the evolutionary experiments continue at night. The
robot is connected to a workstation through rotating
contacts that provide serial data transmission and power
supply. The spiking networks and genetic operators run
on the workstation.

takes less than 0.4 square millimeters of chip area.
In this paper, we take a different approach to the

generation of functional spiking circuits in that a) we
show that the architecture of functional spiking circuits
can be evolved instead of hand-designed and b) we de-
scribe a software implementation of evolutionary spiking
circuits in digital microcontrollers with size and power
consumption competitive with analog VLSI chips men-
tioned above. Since the software operates at the level of
single bits and uses few logic functions, both the neural
circuit and evolutionary algorithm fit on the same chip
in a few bytes of data memory. The method is tested
with a 2-cm long microrobot that must develop naviga-
tion abilities without human intervention and external
cables.

Evolutionary Spiking Circuits for Robot

Navigation

In previous work, some of us (Floreano & Mattiussi
2001) investigated the evolvability of spiking circuit ar-
chitectures for vision-based navigation of a mobile robot.
A Khepera robot with a linear camera was asked to navi-
gate in a rectangular arena with textured walls (figure 1).
The walls were filled with black and white vertical stripes
of random size.2 The fitness value was proportional to
the amount of forward movement during 40 seconds of
robot life. Therefore, robots that could move straight
and avoid walls had higher probability of reproduction.

2Random size was used to prevent development of trivial
solutions whereby the neural network would use the size of
the stripes to measure distance from walls and self-motion.
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Figure 2: Network architecture (only a few neurons and
connections are shown) and genetic representation for
one neuron. Left : A conventional representation showing
the network architecture. Right : The same network un-
folded in time (neurons as circles, synaptic connections
as squares). The neurons on the column receive signals
from connected neurons and receptors shown on the top
row. The first part of the row includes the same neurons
at the previous time step to show the connections among
neurons. Sensory neurons do not have interconnections.
The signs of the neurons (white = excitatory, black =
inhibitory) and their connectivity pattern is encoded in
the genetic string and evolved.

The architecture of a fully recurrent network of 10 spik-
ing neurons connected to 16 spiking visual receptors was
genetically encoded and evolved using a standard ge-
netic algorithm (Goldberg 1989) with a population of
60 individuals sequentially evaluated on the same robot.
The architecture is genetically represented by a binary
string composed of blocks corresponding to each neu-
ron. The first bit of a block encodes the sign of the
corresponding neuron {1, −1} and the remaining n + s

bits encode the presence/absence {1, 0} of a connection
from the n neurons and from the s receptors (figure 2).
The synaptic strengths of all existing connections are
set to 1. The spiking neuron model used in those ex-
periments included the response profile of synaptic and
neuron membranes to incoming spikes, time delays to
account for axon length, and membrane recovery profile
of the refractory period (Gerstner 1991). The parameter
values for the equations were predefined and fixed for
all networks. The neural network software, consisting of
several hundred lines of C++ code in order to simulate
the entire network activation and signal transmission,
was run by an external workstation communicating with
the robot every 100 ms through a serial connection that
transmitted visual information and motor commands.
The graph on the left of figure 3 displays population
mean and population best fitness values averaged across
six runs of evolutionary spiking networks. Fitness val-
ues between 0.15 and 0.2 already correspond to robots
that can move forward and avoid walls. Further fitness
gains correspond to faster and smoother trajectories. As
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Figure 3: Fitness values obtained on the physical robot Khepera (best fitness = thick line; average fitness = thin line).
Each data point is the average of several evolutionary runs with different random initializations. Left : Evolution of
spiking networks (average over six runs). Right : Evolution of connectionist sigmoid networks where 10 additional
generations per run were allowed to check for signs of improvement (average over three runs).

a comparison, we performed another set of experiments
with networks of sigmoid neurons using the same archi-
tecture, genetic encoding, and evolutionary parameters.
The graph on the right of figure 3 shows the average
fitness values measured across three runs of sigmoid net-
works. Despite allowing for an extra ten generations,
none of the evolutionary runs could improve fitness val-
ues along generations. Occasional higher values are given
by individuals that perform wide circles, independently
of the sensory input, until they remain stuck against a
wall.
Neural and behavioral analysis of evolved spiking con-

trollers (figure 4) indicated that neurons exploit tempo-
ral correlation of spiking activity from sensory neurons
as well as from internal neurons in order to avoid walls
and maintain a smooth forward trajectory (Floreano &
Mattiussi 2002).

Evolutionary Spiking Circuits

in a Microcontroller3

A microcontroller is an integrated circuit composed of a
microprocessor unit, memory, and input/output periph-
eral devices (figure 5). In other words, it is a full com-
puter in a single chip capable of receiving, storing, pro-
cessing, and transmitting signals to the external world.
Microcontrollers are used for a wide range of smart de-
vices, such as microwave ovens, telephones, washing ma-
chines, car odometers, and credit cards. More than 3.5
billion microprocessor units are sold each year for embed-
ded control, exceeding by more than an order of magni-
tude the number of microprocessor units sold for com-
puters (Katzen 2001).

Most applications using microcontrollers require very
low power consumption, small size, robustness to hard
operating conditions, and low price. These features come

3 c© 2001, 2002 EPFL, Dario Floreano. The copyright ap-
plies to the software implementation of the neural circuit, of
the evolutionary algorithm, and of their combination.
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Figure 4: Top: Architecture of the best spiking con-
troller after 30 generations. Black circles = inhibitory
neurons, white circles = excitatory neurons. Bottom:
Typical trajectory of robot displayed by this spiking con-
troller. The asterisk indicates the starting point. The
curvature of the trajectory depends on the pattern of
stripes seen by the robot.

at the expense of the number of transistors and instruc-
tions per second, resulting in very low computing power
compared to personal computers. Consequently, low-
level languages, such as assembler, are often used to ex-
ploit efficiently every single bit of memory and complex
functions are approximated by combination of simpler
ones or represented as look-up tables of input-output
numbers.

The core idea explored in this paper is that spiking
circuits can be mapped quite easily into microcontrollers
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Figure 5: Components of a microcontroller with von
Neumann architecture. The microprocessor unit is com-
posed of an Arithmetic Logic Unit and of control devices
to move data from/to memory banks and input/output
ports. The memory banks are sometimes organized in
physically separated locations. For example, a micro-
controller may use ROM memory to store a program
composed of a maximum of 2k instructions, each 14 bits
long; a RAM memory to store 224 bytes of data; and
an EEPROM memory to store 128 bytes of data. The
input/output ports can be connected to sensors, key-
boards, LEDs, motorized actuators, or any other periph-
eral. Gray lines represent the bus where one instruction
or data item at a time is moved across components. The
family of PIC microntrollers used in these experiments
use the Harward architecture whereby the data mem-
ory and instruction memories can be accessed in parallel
through two different buses.

because spikes are essentially binary events and the non-
linear dynamics and precise coding of spiking circuits
can be provided by spiking times, rather than by non-
linear, real-valued, activation functions used in connec-
tionist neuron models. In other words, a few logic op-
erations (such as AND and NOT) and instructions to
move around single bits over time would be sufficient to
build in tiny chips large circuits of spiking neurons that
display complex abilities and behaviors.

The robotics experiment described in the previous sec-
tion showed that artificial evolution can easily discover
quite powerful spiking circuits by exploring only the
space of neuron sign and connectivity. Both variables
can be described by a single bit (1 = positive sign for
neurons, connection enabled for synapses; 0 = negative
sign, connection disabled) and therefore can be efficiently
stored and easily manipulated in microcontrollers.

The next two subsections will describe the neuron and
evolutionary model, respectively, as well as the imple-
mentation idea. The section that follows will describe
an example of this implementation where a microrobot
equipped with a microcontroller evolves without human
intervention and external computers in less than two
hours the ability to move around a maze.

The chips used in the experiments described here be-

Figure 6: Behavior of a neuron with constant firing
threshold. Values are those used in the experiments de-
scribed in this paper.

long to the PIC (Peripheral Interface Controller) fam-
ily of microcontrollers by Arizona Microchip Technology
(www.microchip.com). However, the same implementa-
tion schema is applicable to any other type of microcon-
troller.

Neuron Model and Implementation

The neuron model used in the experiments with the
Khepera robot described above is much too complex to
be implemented in a microcontroller because it uses sev-
eral non-linear functions, requires floating-point preci-
sion and relatively high computing speed. Therefore,
the neuron model used here is a simple integrate-and-
fire model with leakage and refractory period.
The neuron behavior (figure 6) is described by the fol-

lowing steps:

1. Refractory period. If the neuron has emitted a spike
within the previous ∆t, do not update its membrane
potential. In these experiments, ∆t = 1.

2. Compute the contribution of incoming spikes et
i as the

sum of spikes ot
j at time t through existing connections

wij weighted by the sign of emitting neurons sj :

et
i =

N
∑

j

ot
jwijsj (1)

where pt
j ∈ {0, 1}, wij ∈ {0, 1}, sj ∈ {−1, 1}.

3. Update membrane potential υt
i by adding the contri-

bution of incoming spikes to the available potential,
but do not go below a minimum level υmin

i

υt
i =

{

υt−1

i + et
i υt−1

i + et
i ≥ υmin

i

υmin

i otherwise
(2)

where υmin

i = 0 ∀i in these experiments.

4. Spike generation. If the membrane potential is larger
than, or equal to, a threshold υmax

i , set the neuron
output to 1 (spike) and the membrane potential to its
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Figure 7: Digital representation of one neuron in the
microcontroller.

minimum value υmin

i ; otherwise set the neuron out-
put to 0 (no spike) and do not modify the membrane
potential.

ot
i =

{

1 and υt
i = υmin

i : υt
i > υmax

i + rt

0 : otherwise
(3)

where here the threshold υmax

i = 5 ∀i and rt is a ran-
dom integer in the range [−2, 2] to prevent the emer-
gence of locked oscillations in networks with feedback
connections.

5. Leakage. Subtract a leaking constant ki from the
membrane potential, but do not go below the mini-
mum level υmin

i

υt
i =

{

υt
i − ki : υt

i − ki ≥ υmin

i

υmin

i : otherwise
(4)

Here ki = 1 ∀i.

The circuit architecture is similar to that used for the
experiments on vision-based navigation described above.
Each neuron can be connected to all neurons (including
itself) and to all sensory neurons, as in figure 2. The sign
of the neuron determines the effect of its spikes on other
neurons (equation 2). The presence of a spike in the
sensory neuron is determined by the activity of sensors,
as explained later.
Since the Arithmetic Logic Unit (figure 5) of the mi-

crocontroller used in these experiments can operate on 8
bits in parallel, the circuit described here is composed of
8 interconnected neurons and 8 sensory neurons, which
are stored in the RAM data memory (figure 7). The
output (1 = spike; 0 = no spike) of the 8 neurons is
stored in byte OUTPS (1 bit per neuron) and that of
the 8 sensors in byte INPS (1 bit per sensor). The sign
of the 8 neurons is stored in byte SIGN (1 = positive;
0 = negative). The connectivity pattern of one neu-
ron is stored in one byte of block NCONN (connections
from neurons) and in one byte of block ICONN (con-
nections from sensors). NCONN and ICONN are blocks
of 8 bytes each. The membrane potential of one neuron
is stored in one byte of block MEMB, which is com-
posed of 8 bytes too. The threshold is constant for all

neurons and the stored in byte THRES; the minimum
membrane potential is 0 for all neurons and thus does not
require memory storage. The entire spiking circuit takes
20 bytes (INPS, OUTPS, SIGN, THRES, 8 x MEMB,
8 x NCONN, 8 x NCONN). Nine additional bytes are
used to store random numbers, counters, and temporary
variables (which are shared with the evolutionary algo-
rithm described in the next section).

The steps of the neuron model described above are
implemented as follows:

1. Refractory period. Check state of corresponding bit in
OUTPS; if set to 1, go to step 3.

2. Compute contribution of incoming spikes and mem-
brane update. Start with spikes from sensory neurons:
increment MEMB variable by counting the number of
active bits that result from the AND function of byte
INPS and ICONN. Continue with spikes from positive
neurons: increment MEMB variable by counting the
number of active bits that result from the AND func-
tion of OUTPS and SIGN and NCONN. Finish with
spikes from negative neurons: decrement MEMB vari-
able by counting the number of active bits that result
from the AND function of OUTPS and the complement
of SIGN and NCONN. The decrement is stopped be-
fore MEMB goes below zero (which is readily signalled
by a bit flag in a housekeeping byte of the microcon-
troller; the same byte can signal overflow, which does
not occur here because there are few neurons in the
network).

3. Spike generation. Compute random value for ki and
check whether MEMB is equal or larger to THRES
incremented/decreased by ki. If so (spike), set the
corresponding bit in OUTPS to 1 and MEMB to zero.
Otherwise (no spike), set corresponding bit in OUTPS
to 0.

4. Leakage. If MEMB is greater or equal than the leaking
constant (1), decrement it by the leaking constant.

The network is update synchronously, so that each neu-
ron changes its state according to the state of all neu-
rons computed at the previous cycle. Therefore, step 3
above updates only a temporary copy of OUTPS which
is then moved into OUTPS once all neurons have been
updated. Alternatively, one could update the network
asynchronously by picking up a neuron at random and
change directly OUTPS at step 3.

Once the entire network has been updated, the array
of sensory spikes INPS is updated too. When run on a
PIC16F628 using the embedded R/C oscillator running
at 4MHz, the entire network is updated in approximately
2 ms. In some case, such as for the robotics experiment
described here, the entire network can be updated faster
than the time required by the physical sensors to collect
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information. Therefore, in between new sensory values,
INPS is set to all 0’s while the neurons continue to be
updated using only internally generated spikes. Alter-
natively, one could decide to update INPS, or even the
entire network, only when new sensory inputs are avail-
able.

Evolution Model and Implementation

The experiments on vision-based navigation described
above suggested that functional spiking circuits can be
evolved by genetically encoding only the sign of the neu-
rons and the presence/absence of synaptic connections
(see figure 2). The same genetic encoding has been used
for the neuron model used here. Consequently, the ge-
netic string of the spiking circuit described here con-
sists of only 17 bytes: 1 byte for the sign of the neurons
(SIGN), 8 bytes for its neural connections (NCONN),
and 8 bytes for its sensory connections (ICONN).

The memory constraints of microcontrollers puts a se-
vere limit on the number of genetic strings (individu-
als) maintained in the population. Therefore, a form
of steady-state genetic algorithm, which experimentally
showed to be suitable for small populations (Whitley
& Kauth 1988; Syswerda 1989), has been chosen. The
implementation used here, designed to maximize explo-
ration while preserving the best solution obtained so far,
works as follows:

1. Randomly generate a population of binary strings and
initialize their fitness values to zero.

2. Pick an individual at random, mutate it, and measure
its fitness.

3. If its fitness is equal or larger to the fitness of the
worst individual in the population, write its genetic
string over the old one, otherwise throw it away.

4. Go to step 2.

Mutated individuals are put back in the population even
if they have the same fitness of the worst individual in
order to allow for “neutral walks” (Kimura 1983) on
the genetic landscape. This may be a useful property
for evolution of small converged populations (Harvey &
Thompson 1996).

In these experiments, each individual is mutated at
three locations by toggling the value of a randomly
selected bit. The first mutation takes place in the
SIGN byte that defines the signs of the neurons. The
second mutation occurs at a random location of the
NCONN block that defines the connectivity among neu-
rons. The third mutation occurs at a random location
of the ICONN block that defines the connectivity from
sensors. Mutations are performed by making an XOR
operation between the byte to be mutated and a byte
with a single 1 at a random location.

Figure 8: The mobile micro-robot Alice in the basic ver-
sion.

It is useful to store the population in the EEPROM
because this type of memory can be read and written by
the program just like the RAM memory, but in addition
it holds its contents also when the microcontroller is not
powered (at least 40 years for the microcontrollers used
here). Each individual occupies a continuous block of
bytes where the first byte is its fitness and the remain-
ing bytes represent the genetic string. The very first
byte of the EEPROM memory records the number of re-
placements made so far. Whenever the microcontroller is
powered up, the main program reads the first byte of the
EEPROM. If it is 0, the population is initialized (step 1
in the procedure described above), otherwise it is incre-
mentally evolved (step 2). EEPROM memories can be
written only a limited number of times (for example, the
EEPROM of the microcontroller used here can be writ-
ten/read approximately 10,000,000 times) and usage and
temperature generate errors during reading/writing (bit
values are toggled) that require error-checking routines.4

In the experiments described below, we have decided to
keep a copy of the entire population in the free space of
the RAM memory, use it for evolution, and copy it to
the EEPROM at predefined large intervals.

The Alice Microrobot

The method described above has been tested on a
simple evolutionary task for an autonomous micro-robot
equipped with a PIC microcontroller. Alice (figure 8)
is one of the smallest autonomous mobile robots in the
world (Caprari et al. 1998). Its long energetic auton-
omy between 2 (regular batteries) and 10 hours (with an
extra battery module) make it unique in its class. Al-
ice is a programmable and modular robot. In its basic

4These errors represent a free mutation operator during
reading, if the corresponding error-checking routine is not
used, and could substitute the XOR and random instructions
mentioned above.
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Dimensions 21 × 21× 22 mm
Weight 5 g
Max speed 40 mm/s
Power consumption 4 mW – 10 mW
System autonomy up to 10 hours
Mechanical structure plastic frame and PCB
Motors 2 bi-directional Swatch motors
Motion 2 wheels on the minute axis
CPU PIC16F628 @ 4 MHz
Energy source 3 button batteries V377

(3 x 1.5V, 23 mAh)
Extra battery pack rechargeable NiMH battery

3/V40H (3 x 1.2V, 40 mAh)
Sensors 4 infrared proximity sensors
Communication tiny cables (debugging/analysis)

Table 1: Features and components of the Alice robot.

Flash ROM 2 Kwords (14 bits)
RAM data 224 Bytes
EEPROM data 128 Bytes
Pins 18, (15 I/O)
Power consumption < 2.0 mA @ 5.0 V, 4.0 MHz

Table 2: Data of the PIC16F628 microcontroller.

configuration it has 2 motors for locomotion, 4 active in-
frared sensors, a microcontroller and 3 button batteries.
A number of modules can be added on its top, such as
vision, radio, and an extra battery pack. Table details
all the parts and characteristics of the version used for
these experiments. Thanks to its programmability and
interface with personal computers, Alice has been used
in various research (Caprari, Arras, & Siegwart 2001;
Siegwart et al. 1998) and educational projects (Caprari,
Arras, & Siegwart 2000).

The microcontroller PIC16F628 from Microchip is the
central part of the electronics and control of the robot.
It directly drives the 2 low-power, step motors through
6 pins and serially reads the values of the analog-digital
converter for sensor measurement. The PIC16F628 is
a RISC (Reduced Instruction Set Computer) microcon-
troller whose entire package occupies approximately 2
mm2 in the version used here. Most of the memory re-
sources are taken by the management of the sensors and
motors. The software core is composed of a very sim-
ple real time operating system which handles 5 different
time-critical tasks (right and left motors, communica-
tion, sensor reading and switching) that have the priority
on the spiking circuit update. The infrared sensors have
a limited range of 2 to 3 cm, which is similar to the size of
the robot itself. Since the sensor output is noisy, the last
bit of a sensor activation that is read every 50 ms to re-
initialize the pseudo-random number generator required

Figure 9: The mobile micro-robot Alice with the extra
battery module providing up to 10 hour of energetic au-
tonomy.
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Figure 10: Fitness values shown as a function of wheel
speeds (sensor activation i = 0). Positive values indicate
forward rotation.

to update the spiking circuit and run the evolutionary
algorithm. For the repeated experiments described in
this paper, a rechargeable battery-pack module (figure 9)
has been developed instead of replacing every two-three
hours the button batteries.

Evolutionary Experiments

The robot was positioned in a 25 by 18 cm arena with
a wall in the middle and asked to move forward without
hitting the walls. The fitness was computed and accu-
mulated at each sensory-motor cycle using a truncated
version of the often-used function to evolve straight nav-
igation and obstacle avoidance (Floreano & Mondada
1994)

Φ = V (1 − ∆V )(1 − i)

where V is the sum of the speeds of the two wheels, ∆V

is the absolute difference between the two wheel-speeds
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Figure 11: Architecture and connectivity of a randomly
generated network. Squares indicate presence of a synap-
tic connections. Only the connections among neurons
and neuron signs are genetically encoded and evolved.
All neurons are always connected to all sensors (see text).
The small drawings illustrate how the network is con-
nected to the sensors (a) and motors (b) of the robot.

sensor value bits set
0-1 000
2-3 001
4 011

5-7 111

Table 3: Coding of the sensory inputs for the three
frontal sensors. The network has 8 sensory input bits.
For the left and right frontal sensor all three bits are used
while for the central front sensor the last bit is discarded.

and i is the activity of the most active sensor. Since the
Alice robot does not have wheel encoders to measure
wheel rotation, the speed values used in the formula are
taken from the output of the neural circuit. In addition,
whenever one of the wheel speeds was in backward ro-
tation, the entire fitness was set to 0. Finally, in order
to use as few bytes of memory as possible to store the
fitness value, each of the three terms were scaled so the
maximal fitness value of each sensory-motor step multi-
plied by the total number of steps could fit in a single
byte. Figure 10 plots the actual fitness values as a func-
tion of wheel speeds, provided that all infrared sensors
are inactive.

The spiking circuit was composed of 8 neurons and 8
sensory units, as described above. Only the three frontal
proximity sensors were used. To compensate for the
steep drop-off response profile, the activation of each
sensor is scaled in the range [0, 7] and coded on three
bits by setting active bits proportionally to the sensor
activation, as shown in table . The network has a total
of 8 sensor input bits. 3 bits are used for the front left
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Figure 12: Fitness of the best individuals in 7 evolution-
ary runs. Data points are sampled every 3 minutes.

and the front right sensor each and 2 bits for the center
front sensor. In other words, the more active the sensors
are, the more sensory units emit a spike. Furthermore,
given the simplicity of the navigation task considered
here, we decided to genetically encode and evolve only
the signs of the neurons and the connections among neu-
rons, leaving all neurons fully connected to all sensors.
That means that each neuron has the same sensory in-
formation and cannot tell where the walls are. Although
this may slightly complicate the discovery of a good nav-
igation stategy, it results in very short genetic encodings
(1 byte for SIGN and 8 bytes for the NCONN block).
The sensory input was computed anew every 28 ms dur-
ing which the network was let free to update its entire
state several times (once every 2ms for this microcon-
troller run at 4 MHz). At the end of the 28 ms, the
velocities of the two wheels were set proportionally to
the number of spikes emitted by the motor neurons in
that interval. The speed of each wheel was the algebraic
difference of the spike count of two motor neurons, one
moving it forward and the other moving it backward.
The result was scaled in the range [−4, 4].

For each experiment, a population of 6 individuals was
randomly initialized and evolved for 3 hours using on-
board batteries. Each individual was tested for 10 sec-
onds while a random movement for 3 seconds was applied
between individuals. Every three minutes the best fit-
ness obtained so far was logged in a block of 60 bytes in
the RAM and then downloaded to a computer at the end
of the experiment. Figure 12 plots the fitness values of
the best individuals for each of the 7 experiments with
different random initializations of the population.

Figure 13 shows the path traced over 10 seconds by
one of the best evolved robots with a fitness of approx-
imately 120. Evolved robots go forward and whenever
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Figure 13: The robot in the environment used in the
experiments. The environment is made out of white
cardboard and has the dimensions 25 × 18 cm with an
12 × 3 cm obstacle in the middle. The path covered by
an evolved robot in 10 seconds is over-layed from a video
footage.

sensor activity becomes large they turn on the same side.
The degree of rotation and speed depends on the sensory
activity level and is quite tuned to the geometry of the
environment. In best robots, this strategy corresponds
to a careful wall following strategy. Small occasional jigs
are most likely caused by the noise applied to the firing
threshold. Robots with lower fitness values tend to ro-
tate more frequently and thus remain in the same area
of the maze, but always manage to move away from the
walls.

Discussion

There is nowadays a consensus in Evolutionary Robotics
(Harvey et al. 1997; Lipson & Pollack 2000; Nolfi & Flo-
reano 2001) that it is necessary to search for the type of
neural bricks that are most suitable for interface with the
real world, recombination, and mutation. While most re-
searchers use continuous-time recurrent neural networks,
we believe that the spiking circuits described here repre-
sent a very promising alternative because not only they
can display similarly complex non-linear time-dependent
dynamics, but also are easily mapped into low level digi-
tal circuitery (which is more widely available and usable
than analog VLSI). In addition, our preliminary experi-
ments indicate that they may be more suitable for evo-
lutionary systems in the real world.

The speed and reliability of the results obtained with
the micro-robot Alice are also a promising indication of
the efficacy of the models and methods suggested here
to evolve circuits of spiking neurons in digital microcon-
trollers with a few bytes of memory. The experiments ob-
tained with the vision-based Khepera robot let us think
that the approach will scale up to more complex tasks
and sensory inputs. Provided that enough data RAM
is available, it is straightforward to implement circuits

where the number of neurons and/or sensors is a mul-
tiple of 8. In addition, it is possible to build a network
of several microcontrollers, each implementing a spik-
ing module, and let them communicate spikes in parallel
through input/output ports or using a time-stamp com-
munication protocol, such as the Address-Event Repre-
sentation (Lazzaro et al. 1993). Obviously, that would
require a different type of genetic encoding, possibly one
based on gene expression and module growth.

The approach described here could also find its way
in a large set of intelligent devices with embedded mi-
crocontrollers. The microcontroller described here is an
instance of a much larger variety of devices where the
method can be adapted to meet different memory or en-
ergetic constraints. For example, to stay with the PIC
family used here, the program could be easily modified
to drastically improve occupation of instruction memory
over data memory, or viceversa. Similarly, energy con-
sumption could be significantly reduced by putting the
microcontroller in standby mode (consumption drops to
less than 1µA) between sensory updates instead of con-
tinuously updating the neural network. For several ap-
plications, such as adaptive dishwashers and hairdryers,
smart credit and identity cards, etc. the requirements
for adaptation, non-linear dynamics, and input/output
processing are likely to be less demanding than for au-
tonomous mobile robots. In that case, much simpler
spiking circuits could be evolved in less digital space.

Future work

Our current work is aimed at characterizing the dynam-
ics and evolvability of the models described in this pa-
per. We are also expanding the model to include vision
inputs and distributed implementation across different
microcontrollers within the same robot. The approach
is being applied in both wheeled microrobots and flying
robots where weight, size, and energetic constraints are
a major issue.

In parallel, we are exploring new types of genetic en-
codings for evolution of adaptive and self-repairing cir-
cuits of spiking neurons implemented directly in recon-
figurable digital hardware.
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