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Abstract

In this paper, we present a pareto multi–objective ap-
proach for evolving the behavior and brain (an artificial
neural network (ANN)) of embodied artificial creatures.
We will attempt to simultaneously minimize the net-
work size while maximizing horizontal locomotion. A
variety of network sizes and behaviors were generated
by the pareto approach. The best networks exhibited a
higher level of sensory-motor coordination and the crea-
ture was able to maintain the walking behavior under
different environmental setups.

Introduction

Multi-objective optimization has been previously in-
troduced for action selection in behavior-based robotics
using conventional theory (Pirjanian 1998) and for the
design of a robot arm using evolutionary theory (Coello
Coello, Christiansen, & Aguirre 1998). In this paper, a
multi-objective approach is investigated for evolving ar-
tificial neural networks (ANNs) that act as controllers
for the legged locomotion of a 3-dimensional, artificial
quadruped creature simulated in a physics-based en-
vironment. The Pareto-frontier Differential Evolution
(PDE) algorithm is used to generate a pareto set of
ANNs that trades-off between locomotion behavior and
brain (ie. neural network) size. The concept of pareto
defines a partial order dominance over the set of solu-
tions. A solution X is said to be non–dominated (pareto)
iff there is no other solution Y in the population where
Y is better than X wrt all objectives.

The operational dynamics of the evolved creatures are
analyzed to provide an insight into how a variety of con-
trollers with different behaviors emerge from the evolu-
tion. A comparison between a set of pareto controllers
showed that different brain sizes exhibit noticeably dif-
ferent locomotion behaviors. Although this may seem
obvious, maintaining a variety of brain sizes and behav-
iors is mainly contributed by the optimization of conflict-
ing objectives. We also found that a much higher level of
sensory-motor coordination is present in the best evolved
controller. Finally we investigated the effects of environ-
mental, morphological and nervous system changes on

the artificial creature’s behavior. Similar to other stud-
ies, certain changes were found to be detrimental to the
creature’s walking-path. In contrast to other studies,
however, the creature was able to maintain the walking
behavior in a large majority of the experiments.

Situated and Embodied Evolution

The study of evolving physically situated and em-
bodied artificial creatures has been a hotbed of re-
search in recent years. The availability and maturation
of commercial-off-the-shelf physics engines coupled with
the dramatic increase of personal computing power have
encouraged research into this intriguing field of artificial
life (Taylor & Massey 2001). Since the pioneering work
of Sims’ (Sims 1994), there were notably few significant
advancements in this field until very recently.

Research in this area generally falls into two cate-
gories: (1) the evolution of controllers for creatures with
fixed (Arnold 1997; Bongard & Pfeifer 2002; Gritz &
Hahn 1997; Harvey 1997; Ijspeert 2000; Reeve 1999) or
parameterized morphologies (Lee, Hallam, & Lund 1996;
Paul & Bongard 2001), and (2) the evolution of both
the creatures’ morphologies and controllers simulta-
neously (Bongard 2002; Hornby & Pollack 2001; Ko-
mosinski & Rotaru-Varga 2000; Lipson & Pollack 2000;
Ray 2000; Sims 1994; Taylor & Massey 2001). Some
work has also been carried out in evolving morphol-
ogy alone (Eggenberger 1997) and evolving morphology
with a fixed controller (Lichtensteiger & Eggenberger
1999). Related work using wheeled robots have also
shown promising results in robustness and the ability
to cope with changing environments by evolving plas-
tic individuals that are able to adapt both through evo-
lution and lifetime learning (Floreano & Urzelai 1998;
2000).

The emphasis of most of these studies have been on
the role of genetic encodings and how different types
of genotype-phenotype representations allow for greater
evolvability (Bongard 2002; Hornby & Pollack 2001;
Komosinski & Rotaru-Varga 2001). There have also
been some investigations into the role of fitness func-
tions and how they affect the direction of the evolu-
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tionary process (Floreano & Urzelai 2000; Komosinski
& Rotaru-Varga 2000; Ray 2000). A very recent investi-
gation explored how morphological complexity itself af-
fects the emergence of more complex behavior in artifi-
cial creatures (Bongard & Pfeifer 2002). Considerably
little has been said about the role of controllers in the
artificial evolution of such creatures. It has been noted
that the potential of designing more complex artificial
systems through exploitation of sensory-motor coordina-
tion remains largely unexplored (Nolfi & Floreano 2002).
As such, there is currently a lack of understanding of
how the evolution of controllers affects the evolution of
morphologies and behaviors in physically simulated crea-
tures. It remains unclear what properties of an artificial
creature’s controller allow it to exhibit the desired behav-
ior. A better understanding of controller complexity and
the dynamics of evolving controllers should pave the way
towards the emergence of more complex artificial crea-
tures with more complex morphologies and behaviors.

Much work in evolutionary robotics have focused on
evolving controllers for wheeled locomotion (Lee, Hal-
lam, & Lund 1996; Floreano & Urzelai 1998; 2000;
Nolfi & Floreano 1998). Less work have been conducted
on evolving controllers for legged locomotion such as
(Arnold 1997; Reeve 1999). Here we are attempting to
evolve controllers that can generate walking behaviors
for a four-legged creature.

Methods

The Physics Simulator

The simulation is carried out in a physically realistic
environment which allows for rich dynamical interactions
to occur between the creature and its environment. This
in turn enables complex walking behaviors to emerge
as the creature evolves the use of its sensors to control
the actuators in its limbs through dynamical interactions
with the environment. Furthermore, the accurate mod-
elling of the simulation environment plays a crucial part
in producing artificial creatures that move and behave
realistically in 3D (Taylor & Massey 2001). A dynamic
rather than kinematic approach is paramount in allowing
for effective artificial evolution to occur. Physical prop-
erties such as forces, torques, inertia, friction, restitution
and damping need to be incorporated into the artificial
evolutionary system. To this end, the Vortex physics en-
gine (Critical Mass Labs 2002) was employed to generate
the physically realistic artificial creature (Figure 1) and
its simulation environment.

The artificial creature is a basic quadruped with 4
short legs. Each leg consists of an upper limb connected
to a lower limb via a hinge (one degree-of-freedom) joint
and is in turn connected to the torso via another hinge
joint. The mass of the torso is 1 and each of the limbs
is 0.5. The torso has dimensions of 4 x 1 x 4 and each
of the limbs has dimensions of 1 x 1 x 1. The hinge

Figure 1: Screen capture of quadruped in the simulation
environment.

joints are allowed to rotate between -1.57 to 0 radians
for limbs that move counter-clockwise and 0 to 1.57 ra-
dians for limbs that move clockwise from their original
starting positions. Each of the hinge joints are actuated
by a motor that generates a torque producing rotation
of the connected body parts about that hinge joint. The
creature’s overall central nervous system is illustrated in
Figure 2.
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Figure 2: The quadruped’s central nervous system.

Correspondingly, the artificial creature has 12 sen-
sors and 8 actuators. The 12 sensors consist of 8
joint angle sensors (x1, x2, x3, x4, x5, x6, x7, x8) corre-
sponding to each of the hinge joints and 4 touch
sensors (x9, x10, x11, x12) corresponding to each of
the 4 lower limbs of each leg. The 8 actuators
(y1, y2, y3, y4, y5, y6, y7, y8) represent the motors that
control each of the 8 articulated joints of the creature.
These motors are controlled via outputs generated from
the ANN controller which is then used to set the desired
velocity of rotation of the connected body parts about
that joint.

Controller Evolution Using PDE

Similar to (Abbass 2001; 2002), our chromosome is a
class that contains one matrix Ω of real numbers repre-
senting the weights of the artificial neural network and
one vector ρ of binary numbers (one value for each hid-
den unit) to indicate if a hidden unit exists in the net-
work or not; that is, it works as a switch to turn a hidden
unit on or off. The sum of all values in this vector rep-
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resents the actual number of hidden units in a network.
This representation allows simultaneous training of the
weights in the network and selecting a subset of hidden
units.

In the PDE algorithm for evolving ANNs, an entire set
of controllers is generated in each evolutionary run with-
out requiring any further modification of parameters by
the user. The algorithm consists of the following steps:

1. Create a random initial population of potential solutions.
The elements of the weight matrix Ω are assigned random
values according to a Gaussian distribution N(0, 1). The
elements of the binary vector ρ are assigned the value 1
with probability 0.5 based on a randomly generated num-
ber according to a uniform distribution between [0, 1]; oth-
erwise 0.

2. Repeat

(a) Evaluate the individuals in the population and label
those who are non-dominated.

(b) If the number of non-dominated individuals is less than 3
repeat the following until the number of non-dominated
individuals is greater than or equal to 3:

i. Find a non-dominated solution among those who are
not labelled.

ii. Label the solution as non-dominated.

(c) Delete all dominated solutions from the population.

(d) Repeat
i. Select at random an individual as the main parent α1,

and two individuals, α2, α3 as supporting parents.
ii. Crossover: with some probability Uniform(0,1), do

ω
child

ih ← ω
α1

ih
+ N(0, 1)(ωα2

ih
− ω

α3

ih
) (1)

ρ
child

h ←



1 if (ρα1

h
+ N(0, 1)(ρα2

h
− ρ

α3

h
)) ≥ 0.5

0 otherwise

(2)
otherwise

ω
child

ih ← ω
α1

ih
(3)

ρ
child

h ← ρ
α1

h
(4)

and with some probability Uniform(0,1), do

ω
child

ho ← ω
α1

ho
+ N(0, 1)(ωα2

ho
− ω

α3

ho
) (5)

otherwise
ω

child

ho ← ω
α1

ho
(6)

where each weight (ωih, ωho), and hidden unit flag, ρ,
in the main parent are perturbed by adding to them a
ratio, F ∈ N(0, 1), of the difference between the two
values of this variable in the two supporting parents.
At least one variable must be changed.

iii. Mutation: with some probability Uniform(0,1), do

ω
child

ih ← ω
child

ih + N(0, mutation rate) (7)

ω
child

ho ← ω
child

ho + N(0, mutation rate) (8)

ρ
child

h ←



1 if ρchild

h = 0
0 otherwise

(9)

(e) Until the population size is M

3. Until maximum number of generations is reached.

Experiments

Experimental Setup

A total of 480 evolutionary runs were conducted with
varying population sizes, crossover rates, and mutation
rates while fixing the fitness evaluation window to 500
timesteps. The crossover rates used were 0, 0.1, 0.2,
0.5 and 1 and the mutation rates used were also 0, 0.1,
0.2, 0.5 and 1. The evolutionary setup with a crossover
rate of 0 and a mutation rate of 0 was omitted since
this setup does not generate any variability at all in the
population. The maximum number of hidden units per-
mitted in evolving the artificial neural network was fixed
at 15 nodes. Each experimental setup was repeated us-
ing 10 different seeds to allow the artificial evolution to
commence from different starting points in the search
space. Two population sizes of 20 and 30 were used with
the corresponding number of generations being 30 and
20 respectively. The use of a small population size and
number of generations is a feature of PDE since genetic
diversity is naturally maintained by the pareto selection
mechanism. The total number of genotypes over the en-
tire span of the evolutionary process was kept constant
at 600 genotypes in both these setups. In the final set
of experiments, the creature was subjected to environ-
mental, morphological and nervous system changes to
observe the resultant change in its behavior. The details
of these changes are presented along with the results and
discussions of these experiments.

Results and Discussion

Evolutionary Parameters First we analyzed the ef-
fect of population size on the evolved locomotion behav-
iors. Overall, there did not appear to be any obvious
differences in the range and quality of the evolved con-
trollers between population sizes of 20 and 30. Both
produced a considerably similar quality of locomotion
behaviors although a larger population size did seem to
produce controllers that were slightly better in terms of
average locomotion fitness. However, the difference was
not significant to investigate larger populations.

Different combinations of crossover and mutation rates
did appear to produce results that varied across two
broad spectrums. With both population sizes of 20
and 30, two distinct groups of controllers were gener-
ated through the evolutionary process: (1) runs that
produced high quality solutions but with a low spread
of genotypes, and (2) runs that produced mediocre solu-
tions with a high spread of genotypes. Again, the quality
of solutions refers to the average locomotion fitness and
the spread of genotypes refers to the number of ANNs
with different sizes in terms of hidden units. The first
group of pareto optimal solutions with high quality and
low spread were observed when fairly low mutation rates
of 0.1 and 0.2 were used in combination with a low to
medium crossover rate of between 0.1 to 0.5. The sec-
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ond group of pareto optimal solutions with lower quality
but with a much wider spread of controller sizes were
observed when a high mutation rate of 1 was used.

Operational Dynamics In this section, we analyze
five pareto optimal controllers resultant from a typical
run. To conduct this analysis, the ANNs were used in-
dividually to control the quadruped and the simulation
period was extended to 5000 timesteps. This enables
analysis of not only the evolved behavior but also its
behavior beyond the fitness evaluation window.

The correlation analysis of the best evolved controller
with 4 hidden units has 6 strongly positive correlation
coefficients (>0.7). This indicates that the creature has
evolved an ANN that has learned how to coordinate the
movement of 7 sets of its limbs in order to achieve the
most successful locomotion behavior among the pareto
optimal controllers. With a correlation of 0.98, there is
almost perfect coordination between the upper front left
(UFL) and lower front right (LFR) limbs. Another al-
most perfectly coordinated motion comes from the upper
back left (UBL) and upper back right (UBR) limbs with
a correlation of 0.95. There is also a high level of cor-
relation between the upper front left (UFL) and upper
front right (UFR), lower front left (LFL) and upper front
left (UFL), lower front left (LFL) and upper front right
(UFR), upper front right (UFR) and lower front right
(LFR), and lower front right (LFR) and lower front left
(LFL) limbs.

Figure 3 illustrates the correlation between the 8 limbs
during motion over 5000 timesteps along with the num-
ber of times each leg makes contact with the ground.
Negative and positive correlation coefficients are drawn
in dashed and solid lines respectively.
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Figure 3: Illustration of correlation between limbs for
pareto optimal controllers.

Analysis of the less successful pareto optimal networks
reveals that there is far less coordination achieved by
these controllers. At most 3 strongly correlated sets of

limb movements were obtained using these controllers
compared to 7 strongly correlated sets of limb move-
ments using the best evolved controller. Furthermore, 5
strongly negative correlations (<-0.8) were detected in
the controller with 1 hidden unit. These limbs are not
only uncoordinated but are generating forces that act in
direct opposition to each other, thereby further hinder-
ing the creature’s ability to move.

Finally, we analyze the path of movement that was
taken by the creature in attempting to maximize its hor-
izontal distance covered during the extended simulation
window of 5000 timesteps. Here we compared the paths
of all networks on the pareto-frontier of the last genera-
tion of controller evolution.
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Figure 4: Path of movement using controller with 1. top
left: 0; 2. top right: 1; 3. middle left: 2; 4. middle right:
3; and 5. bottom: 4; hidden units.

An interesting outcome from these multi-objective
evolutions is that we get a range of controllers that vary
in architectural complexity and locomotion capability.
On the one hand, we have a totally random ANN with
no hidden nodes (Figure 4.1) but which is still able to
move the creature away from its origin, although the
movement achieved within the stipulated 500 timesteps
is extremely minimal (approximately 0.5m). In this ran-
dom network, there is still an act of force on the creature
permitting the small initial movement but it is unable
to perform further locomotion due to the lack of syn-
chronization ability. On the other hand, we have the
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best ANN that uses 4 hidden nodes (Figure 4.5) and
is able to move almost 10m within the same time pe-
riod. In addition, we have a further 3 ANNs (Figure
4.2,3,4) that utilize between 1 and 3 hidden nodes which
again have differing locomotion capabilities. Thus, the
multi-objective approach is able to provide the experi-
menter with a whole range of controllers within a sin-
gle run that trades off between the individual optimiza-
tion goals. This represents a significant advantage over
single-objective evolutionary systems that need to be re-
run multiple times in order to test the effect of other
factors such as number of hidden units on the perfor-
mance of artificial creatures (Bongard & Pfeifer 2002).

Effects of Friction In this section, we analyze the
effects of changing some of the environmental parame-
ters of the creature’s world and observe the change in
its behavior. Here, the same controller, which is the
best evolved ANN with 4 hidden units, is used to con-
trol the creature across all different environmental con-
ditions. The resultant behavior is again monitored over
5000 timesteps. First, we discuss the results obtained
from changing the original frictional coefficient of 20 to
lower values of 0, 5, 10 and 15. The purpose of this anal-
ysis was to investigate how the creature’s ability to move
would be affected by reduced amounts of grip with its
locomotion surface.The creature was not able to move horizontally at all
with no ground friction. Its main movement here was
mainly along the vertical direction as it attempted to
stand up and repeatedly failed due to the lack of friction.
With a very small friction of 5, the creature was able
to move forwards although the overall distance travelled
was less than in the original environment that had a sig-
nificantly higher friction of 20. However, the path trav-
elled in the environment with a friction of 5 was much
straighter than in the original environment. This occur-
rence suggests that friction plays a larger role in making
the creature turn compared to making it move forwards.
From the next two environments which had increasingly
higher frictions of 10 and 15, the overall trajectory of the
paths begin to have more curvature as well as increasing
overall distance travelled. Hence, it appears that vary-
ing locomotion surface conditions noticeably affect the
creature’s ability to walk both in terms of its trajectory
as well as total distance travelled.

Effects of Gravity In this next section, we again
change the environmental conditions but instead of sur-
face condition, this time we change the world’s grav-
itational field to approximately simulate conditions of
that on the moon, Mars as well as Jupiter. The pur-
pose of this set of experiments was again to see how the
creature’s behavior would be affected by environmen-
tal changes as well as exploring how hypothetical robots
that are built under our planet’s condition may be able

to also function on numerous other planets that have
significantly different gravities. Such robots may be de-
sirable because firstly building them under normal ter-
restrial conditions will be significantly less complex than
trying to simulate extra-terrestrial conditions. Secondly,
if robots were able to perform reasonably independent of
gravitational changes, then only a single group of simi-
lar robots need to be designed which would be able to
explore multitudes of moons and planets with different
surface gravities.

The creature was still able to function under the
moon’s much smaller gravity although the overall dis-
tance travelled was less than on Earth. There was also
noticeably more vertical movement during the creature’s
locomotion as would be expected because of the smaller
gravity. Under Mars’ gravity, the creature’s familiar U-
shaped path becomes visible again although the overall
distance travelled is again less than that achieved on
Earth. The creature was significantly less successful un-
der Jupiter’s much higher gravity where after standing
up, it was only able to move a small distance forward.
From this analysis, it can be seen that the creature was
still able to function under very different gravitational
forces although it’s locomotion was less successful than
under Earth’s normal gravity.

Effects of Morphological Changes Next, we ana-
lyze the change in the creature’s behavior when there
is a change in its morphology. Again the best evolved
controller with 4 hidden units was used to control the
creature and allowed to move for 5000 timesteps. In
these experiments, we doubled the mass in certain parts
of the creature’s morphology.

Very pronounced changes were observed in the crea-
ture’s locomotion behavior as a result of doubling the
masses of all of its front limbs (Figure 5.1) and all of
its back limbs (Figure 5.2). The doubling of mass in
its front legs resulted in a locomotion path that had a
straighter heading compared to the path observed with
the original uniform mass distribution. Conversely, the
doubling of mass in its back legs resulted in an even
more pronounced curved locomotion trajectory than the
original U-shaped path, where in this case the creature
almost completed a full circle back to its original start-
ing position. These phenomena may be explained by the
fact that the creature achieved its locomotion from the
coordinated movement of front limbs and back limbs re-
spectively. As such, mass redistribution affecting entire
front and back sections of the creature’s body can be
expected to result in significant changes to its locomo-
tion behavior. The doubling of the creature’s torso mass
seemed to cause the creature’s movement to head more
directly towards the Z axis after making its initial left
turn (Figure 5.3). The effect of doubling the mass of
the front left and back right legs did not appear to al-
ter the creature’s path significantly except reducing the
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Figure 5: Path of movement with mass doubled in 1. top
left: front legs; 2. top right: back legs; 3. middle left:
torso; 4. middle right: front left and back right legs; 5.
bottom: front right and back left legs.

magnitude and turning effect of its horizontal movement
(Figure 5.4). The most pronounced change in the crea-
ture’s overall heading was observed when the front right
and back left legs were doubled in mass (Figure 5.5).
This set of morphological changes appeared to have al-
tered the nature of the creature’s locomotion path from a
predominantly left-turning trajectory to a right-turning
trajectory. This may suggest that the contribution to
overall movement from different legs are very different
depending on the relative position of the legs with re-
spect to the creature’s body and direction of motion.

Effects of Sensory-Motor Failure In this section,
we were interested in observing what would happen
to the creature’s locomotion behavior if some sensory–
motor failure occurred. This would be akin to partial
paralysis in four-legged animals where there is loss of
sense and movement in some of their limbs. Here we
disabled the joint angle and touch sensor as well as the
hinge motors in the creature’s entire front right limbs
in the first setup and the entire back left limbs in the
second setup. The best evolved controller with 4 hidden
units was again used to operate the original creature with
uniform mass distributions over 5000 timesteps.

Disabling the creature’s front right leg seemed to have

a harmful effect on its locomotion behavior. It struggled
in trying to stand up and upon visual inspection of the
simulation, this was explained by the fact it could not
maintain its balance. As a result, the creature could not
perform any horizontal movement at all. On the other
hand, disabling the back left leg did not seem to cause
as much harm to the creature’s ability to move although
its overall distance travelled was still significantly less
compared to the original creature which had no impair-
ments. In fact, upon closer inspection, the distinctive
U-shaped locomotion pattern could still be observed but
on a smaller scale. These analyzes again seem to suggest
that the contribution of different legs to the overall lo-
comotion behavior appeared to differ quite significantly
depending on the position of the legs relative to the ori-
entation of the creature’s body and direction of move-
ment. Thus disabling particular legs in certain positions
resulted in dramatically different behaviors.

Conclusion

We have demonstrated the use of a multi-objective
evolutionary algorithm for evolving artificial neural net-
works that act as controllers for the legged locomotion
of an embodied and physically situated quadruped. We
have shown that multi-objectivity allows for the natu-
ral maintenance of genetic diversity. The pareto-frontier
that resulted from each single evolutionary run produced
a set of ANNs that maximized the locomotion capabili-
ties of the creature and at the same time minimized the
size of the controller. The correlation and path analyzes
of the pareto optimal controllers in operation provided
an insight into how the complex coordination between
the quadruped’s different limbs generated the emergent
locomotion behavior. Finally, we also observed that cer-
tain environmental, morphological and nervous system
changes markedly affected the creature’s overall locomo-
tion behavior and in some cases caused total failure of
its horizontal locomotion capability.
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