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Abstract

Identification of the fundamental properties necessary
for the generation of adaptive behaviour is one of the
primary goals for Artificial Life. In this paper, we ad-
dress the related question of whether we can identify
general useful properties of a given solution class. Such
an approach provides a potentially scalable framework
that may enable us to identify general properties of more
complex adaptive systems. We develop a methodology
based on analysis of successfully evolved solutions to an
evolutionary robotics shape discrimination problem, al-
lowing us to identify properties of solution classes that
are potentially useful over a wider class of problems than
the original task. We propose that the evolvability of
the solution class is due to the fundamental property of
temporal adaptivity.

Introduction

In a recent call to arms, Bedau et al. (2000) defined
one of the primary goals for Artificial Life as identifica-
tion of the minimal conditions for transition from specific
to generic response systems. In other words, what are
the fundamental properties necessary for a system to be
adaptive?

Answering such a challenge is well beyond the scope of
current understanding, however in this paper, we make
some headway by investigating the solution classes un-
derlying neural networks used as robot controllers. In
particular, we address two questions. First, how can
we evaluate the effectiveness of a given solution class on
some problem? Second, can we evaluate how effective
the solution class is likely to be on different problems?
In other words, can we identify general useful proper-
ties of a solution class that may hold over a wider range
of problems than simply the problem studied? Such an
approach provides a potentially scalable framework that
may enable us to identify general properties required for
more complex adaptive systems.

We develop a methodology based on analysis of suc-
cessfully evolved solutions to an evolutionary robotics
shape discrimination problem, allowing us to identify
properties of solution classes that are potentially use-
ful over a wider class of problems than the original task.

We go on to test these properties, through analysis of
the evolved solutions in modified environments. We ap-
ply the techniques to a class of artificial neural network
robot controllers inspired by work on diffusible neuro-
modulation, and argue that the evolvability of this bi-
ologically inspired GasNet solution class is due to the
fundamental property of temporal adaptivity.

GasNet robot controllers

Artificial neural networks possess many useful proper-
ties for the generation of behaviour over time. However,
the networks of simple units linked by weighted synapse
connections typically used in ANN applications are ex-
tremely simplified abstractions of the real thing; nervous
systems found in biology are far more complex, with a
multitude of interacting processes operating over both
space and time. The “GasNet” class of neural networks
(Husbands et al., 1998) is explicitly inspired by the ac-
tion of diffusing gaseous neuromodulation in real ner-
vous systems, incorporating a mechanism based on the
neuron-modulating properties of a diffusing signalling
gas into a more standard sigmoid-unit neural network.
In previous work the networks have been used in a vari-
ety of evolutionary robotics tasks, comparing the speeds
of evolution for networks with and without (the “No-
Gas”) the gas signalling mechanism active. In a variety
of robotics tasks, GasNet controllers evolve significantly
faster than networks without the gas signalling mecha-
nism (see e.g. Husbands, 1998; Husbands et al.).

The GasNet and NoGas models

The GasNet is an arbitrarily recurrent ANN augmented
with a gas concentration model, in which the instanta-
neous activation of a node is a function of both the inputs
from connected nodes and the current concentration of
gas(es) at the node. The basic network model consists of
connected sigmoid transfer function nodes overlaid with
a model of diffusing gaseous modulators; the gas does
not alter the electrical activity in the network directly
but rather acts by changing the gain of transfer function
mapping between node input and output.
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The network underlying the GasNet and NoGas mod-
els is a discrete time-step, recurrent neural network with
a variable number of nodes. These nodes are connected
by either excitatory (with a weight of +1) or inhibitory
(with a weight of −1) links with the output Ot

i , of node i

at time-step t determined by a continuous mapping from
the sum of its inputs. This defines the basic NoGas class:
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where Ci is the set of nodes with connections to node
i with connection weights wji, Ot−1

j the output of node

j on the previous time-step, I t
i the external (sensory)

input to node i at time t, and bi a genetically set bias.
Each node has a genetically set default transfer func-
tion parameter K0

i , and for the NoGas class this trans-
fer parameter is fixed over the operation of the network:
Kt

i = K0
i ∀t.

In the GasNet control system, in addition to this
underlying network in which electrical signals flow be-
tween units, an abstract process loosely analogous to the
gaseous diffusing modulators described above is at play.
Some units can emit gases which diffuse and are capa-
ble of modulating the behaviour of other units through
altering their transfer functions. As described below,
this modulation changes the transfer parameter Kt

i as
the network runs, thus the actual shape of the node’s
transfer function is altered via the gas modulation mech-
anism. This form of modulation allows a kind of plas-
ticity in the network in which the intrinsic properties of
units are changing during the operation of the network,
that is during the robot controller lifetime. In the next
sections we describe the gas diffusion and modulation
mechanisms.

Gas diffusion in the networks

In order to incorporate the gas concentration model, the
network is placed in a 2D plane, with node positions
specified genetically. The GasNet diffusion model is con-
trolled by two genetically specified parameters namely
the radius of influence r around the emitting node, and
the rate of build up and decay s. Spatially, the gas con-
centration varies as an inverse exponential of the dis-
tance from the emitting node with a spread governed
by r, with the concentration set to zero for all distances
greater than r (equation 2). The maximum concentra-
tion at the emitting node is one and the concentration
builds up and decays from this value linearly as defined
by equations (equation 3 and 4) at a rate determined by
s. The governing equations are:

C(d, t) =

{

C0 T (t) e−(d/r)2 d < r

0 else
(2)

T (t) =

{

H( t−te

s ) emitting
H(H( ts−te

s ) − H( t−ts

s )) not emitting
(3)

H(x) =







0 x ≤ 0
x 0 < x < 1
1 else

(4)

where C(d,t) is the concentration at a distance d from
the emitting node at time t. te is the time at which
emission was last turned on, ts is the time at which emis-
sion was last turned off, and s (controlling the slope of
the function T ) is genetically determined for each node.
To summarise, within a radius of r from the node, gas
builds up (and decays) linearly to a maximum of e−2d/r

in s time-steps. The total concentration at a node is
then determined by summing the concentrations from
all other emitting nodes (nodes are not affected by their
own concentration, to avoid runaway positive feedback).

Modulation by the gases

There are two virtual gases in the network, gas 1 and
gas 2, which increase and decrease Kt

i (see equation 1)
respectively in a concentration dependent fashion. Both
the type of gas emitted by a node and the conditions
under which it emits are specified genetically. Nodes
emit either gas 1, gas 2 or no gas, and emission occurs
when either the electrical activation at a node exceeds
0.5, or the concentration of gas in the vicinity of the node
exceeds 0.1. The concentration-dependent modulation is
described by equations 5 to 8, with transfer parameters
updated on every time-step as the network runs. Thus
we have:

Kt
i = P[Dt

i ] (5)

P = {−4.0,−2.0,−1.0,−0.5,−0.25,−0.125,

0.0, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0} (6)
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where P[i] refers to the ith element of set P, Dt
i is node

i’s index into the set P of possible discrete values K t
i

can assume, N is the number of elements in P, D0
i is

the genetically set default value for Di, Ct
1 is the con-

centration of gas 1 at node i on time-step t and C t
2 is the

concentration of gas 2 at node i on time-step t. Both gas
concentrations lie in the range [0, 1].

Thus, the concentration of each gas is directly propor-
tional to any change in Dt

i , with a corresponding change
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in Kt
i . Although the change in Kt

i is non-linear these val-
ues represent a smooth change in the slope of the trans-
fer function. Since the transfer functions can change
throughout the lifetime of the network, this system pro-
vides a form of network plasticity not seen in most other
ANNs.

Visual shape discrimination

Figure 1: Screen shot of the simulated arena and robot.
The bottom-right view shows the robot position in the arena
with the triangle and square. Fitness is evaluated on how
close the robot approaches the triangle. The top-right view
shows what the robot ‘sees’, along with the pixel positions se-
lected by evolution for visual input. The top-left view shows
the current activity of all nodes in the neural network. The
bottom-left view shows the robot control neural network.

The evolutionary task at hand is a visual shape dis-
crimination task; starting from an arbitrary position and
orientation in a black-walled arena, the robot must nav-
igate to one shape (a white triangle) while ignoring the
second shape (a white square), under the extremely vari-
able lighting conditions produced by an array of spot-
lights flashing on and off at random time intervals. Both
the robot control network, an arbitrarily recurrent ANN,
and the robot sensor input morphology, i.e. the position
of the input pixels on the visual array, were under evolu-
tionary control. Fitness over a single trial was taken as
the fraction of the starting distance moved towards the
triangle by the end of the trial period, and the evaluated
fitness was returned as the average over 16 trials of the
controller from different initial conditions. Success in the
task was taken as an evaluated fitness of 1.0 over thirty
successive generations of the evolutionary algorithm. In
the work reported here, fitness evaluations are carried
out in a verified minimal simulation (Jakobi, 1998), see
figure 1 for screen-shot of a fitness evaluation in simula-
tion. A large number of controllers evolved in simulation
have been tested on the real robot, with all controllers
displaying similar robot trajectories and fitnesses to the
simulated fitness evaluations (Husbands et al., 1998).

A distributed asynchronous updating evolutionary al-
gorithm was used, with a PopSize of 100 arranged on a
10 × 10 grid. Parents were chosen through rank-based
roulette-wheel selection on the mating pool consisting
of the 8 nearest neighbours to a randomly chosen grid-
point. The child solution was a mutated copy of the par-
ent (the mutation operator applied a µ = 4% mutation
probability per bit, and the same probability per genome
of adding or deleting a network node. No crossover was
used.) and placed back in the mating pool using inverse
rank-based roulette-wheel selection. One generation was
specified as PopSize such breeding events.

Speed of evolution results

Over a large sample of evolutionary runs with GasNet
and NoGas conditions, GasNet networks allowed to use
the gaseous signalling mechanism reached success signif-
icantly faster than the NoGas networks. This speed dif-
ference was seen in several different evolutionary robotics
scenarios (Husbands, 1998; Husbands et al., 1998, e.g.)
and over several different mutation rates, e.g. see figure
2.

Analysis of evolved solutions

A number of studies have carried out analysis of evolved
solutions to robot control problems, notably the work
by Beer and colleagues (Beer and Gallagher, 1992;
Beer et al., 1999; Chiel et al., 1999, e.g). However, the
emphasis has typically been on developing methods for
analysis, or characterising the type of solutions gener-
ated by evolution. The literature is not well developed
in terms of analysing evolved solutions in order to test
the suitability of the underlying solution class. That is
the approach we use in this paper.

Pattern generation

In a number of evolved robotic controllers, rhythmic
pattern generation output was seen to occur, with one
or more nodes locked into some limit cycle behaviour
(Smith, 2002). Figure 3 shows the behaviour of a two-
node subnetwork for a GasNet class solution, with out-
put activity Y , transfer parameters K and gas concen-
trations C0, C1 plotted over 100 time-steps of a sample
evaluation. Note the ‘spiking’ behaviour shown in the
node activity Y2 graph; once every eight time-steps this
right-back motor node comes on. This spiking behaviour
is crucial to the final fitness of the solution — with both
motors on, the robot will move straight-forwards. How-
ever, the right-back motor node turning on once in every
eight time steps produces a slow clockwise turn in the
robot, which in evaluation results in the robot arcing
towards the triangle.

Detailed analysis (Smith, 2002) provides an explana-
tion for this (and other) pattern generation, through the
interaction between the gas and electrical mechanisms
in the network. High electrical output activity of the
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Figure 2: The mean number of evaluations required
for (a) Uniform, one-point and no recombination, and
(b) No recombination, varying mutation rate µ ∈
{0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}. Data averaged over
twenty runs of the distributed evolutionary algorithm. The
error bars represent 95% confidence limits for the mean, the
number above the bar gives the percentage of runs failing to
finish in 1, 000, 000 evaluations.

right-back motor node stimulates gas emission from the
second node in the network, which in turn inhibits the
motor node, in turn stopping the emission of gas which
in turn finally allows the motor node to return to high
electrical activity, and the pattern repeats. In a num-
ber of other successfully evolved GasNet controllers we
have observed similar subnetworks; it appears that the
properties of the GasNet class lend themselves readily to
pattern generation.
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Figure 3: For nodes 2 (the right-back motor node) and 5,
involved in the ‘spiking’ subnetwork, the figure shows data
over a run of 100 time-steps for node output Y ∈ [−1, 1],
node transfer parameter K ∈ [−4, 4], positive and negative
gas concentrations C1, C2 ∈ [0, 1] at the node site. Area
between the output and time axis is shaded for clarity.

Functionally equivalent controllers

Many evolved solutions were found to use functionally
equivalent mechanisms for shape discrimination. Fig-
ure 4 shows two functionally equivalent subnetworks, one
GasNet class controller and one NoGas class controller.
Both controllers time the duration over which bright in-
put is received from visual inputs in the upper half of
the visual field. A second visual input mechanism (not
shown) acts simply as a bright finding detector. This
mechanism is ‘later’ in the visual field than the timing
mechanism, i.e. the position of visual input to this mech-
anism is such that it will ‘see’ things after the timing
mechanism due to the direction of robot rotation, and
is inhibited if the duration of bright input reception is
sufficiently long. This inhibition will occur in the situa-
tion of scanning across the square but not when scanning
across the triangle, so the controllers approach only the
triangle. In the next sections we describe the methods
by which the GasNet and NoGas classes produce such a
timing mechanism.

The GasNet and NoGas “timers” In the GasNet
class, a timing mechanism that retains activity for some
time after the initial input has been received, is simple to
produce. A single node receiving visual input, and with
the property that gas emission occurs when the node out-
put activity is high, will start emitting gas when bright
input is received. The gas concentration built-up during
emission will take some time to decay once bright input
is no longer received. Recall from the section on dif-
fusion that gas concentration decays exponentially with
distance from the emitting node, but increases linearly
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Figure 4: The two functionally equivalent subnetworks.
Both employ the same strategy for triangle-square discrimi-
nation; timing the duration of receiving bright input in the
upper half of the visual field. Due to triangles being nar-
rower than squares at the top, this allows the shapes to be
successfully discriminated.

over time during emission, and decreases linearly over
time once emission stops. Figure 5(a) shows the gas
concentration at the motor node over time when square
wave visual input is received at nodes 8 and 9.

For this timing mechanism to affect the controller op-
eration, we require the built-up gas concentration to af-
fect the motor node activity. Again, this is relatively
simple to effect, as the gas concentration can modulate
either the motor node, or as in the controller analysed
here, another visual input node which has an output
connection to the motor node.

The mechanism underlying the NoGas timer is more
complex, and as seen in the re-evolution analysis is
harder to tune. Analysis of the fully connected three-
node subnetwork (see the right-hand side of figure 4)
shows a single stable equilibrium point for the system
when visual input is below the input threshold, and a
different single stable equilibrium when visual input is
above threshold. The key to the timing mechanism is
how the system moves between these fixed points when
the visual input changes. With no bright input to node
8, the system settles into the first stable fixed point de-
scribed above, while with bright input the system settles
into the second stable point above. Once bright input is
no longer received, the system slowly decays back to the
first stable fixed point.

The feedback between the nodes ensures the decay be-
tween stable states is fairly slow, producing an effect
which can build-up and decay over time, in a similar
fashion to that of gas concentration. The longer that
bright input is received for, the nearer the high visual
input stable state the system reaches, and the longer it
takes to decay back to the low visual input stable state.
Figure 5(b) shows the outputs for the three nodes in
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Figure 5: The GasNet and NoGas timing mechanisms. A
square wave external visual input of increasing width is ap-
plied as input, to illustrate the differences between the output
seen for the triangle and for the square. (a) Gas concentra-
tion C0 over 200 time-steps. (b) Node output data (ranging
from ±1) for nodes 3, 4 and 8. Area between the output and
time axis is shaded for clarity.

the system when a square wave visual input is applied
to node 8, and clearly shows the slow change from one
state to another when visual input changes from dark
to bright, or vice versa. It takes roughly ten time-steps
for node 3 to reach the bright input stable state, and
roughly thirty steps to decay back to the dark visual
input regime. The motor node activity Y3 is the cru-
cial value; as this goes from negative to positive, the
left motor is inhibited, and the robot does not approach
the bright object. Only when sufficient bright input has
been received will this occur, i.e. when the square has
been scanned across.

So why are GasNets evolvable?

From our analysis of evolved controllers, we can frame
some preliminary conclusions on the usefulness of the
mechanisms utilised in GasNet controllers for the gener-
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Double speed Quarter speed
GasNet NoGas GasNet NoGas

Number of cases 20 20 20 20
Mean evaluated fitness (σ) 0.17 (0.074) 0.15 (0.066) 0.36∗ (0.10) 0.21 (0.016)
Mean re-evolution generations (σ) 10 (5)∗∗ 409 (336) 30 (31)∗∗ 591 (346)
Median re-evolution generations 10∗∗ 360 19∗∗ 608

Table 1: Data for the two functionally equivalent networks shown in figure 4, re-evolved in two modified environments. The
robot motors are set to double-speed and quarter-speed respectively, and the two controllers evaluated 100 times for fitness,
then seeded back in to the evolutionary algorithm until 100% fitness was reached (20 runs were performed for each controller
on each condition). The evaluated fitnesses, and mean, standard deviation σ and median generations of re-evolution required
to reach 100% are shown. Significant differences between the GasNet and NoGas controllers are highlighted (both parametric
T-tests and non-parametric Mann-Whitney U tests performed ∗p < 0.05,∗∗ p < 0.01).

ation of adaptive behaviour over time.

First, tunable pattern generation is extremely easy to
produce using GasNet controllers. In general, pattern
generation is based on limit cycle behaviour, with the
system cycling through some set of states (Beer et al.,
1999; Chiel et al., 1999). The spiking subnetwork (figure
3) operated in exactly such a fashion; the high fitness of
the controller was due to this subnetwork slowly turn-
ing the robot back towards the triangle. This leads to
our first hypothesis for why the GasNet class is more
evolvable than the NoGas class; the GasNets are more
amenable to being ‘tuned’ to the specific characteristics
of the environment. The pattern produced in which the
right-back motor node spiked once in every eight time-
steps was perfectly tuned to the speed and size of the
robot wheels, the size of the triangle, and the size of the
arena in which the robot operated. A different pattern
would not have produced such high fitness in this envi-
ronment, and the same pattern would not have produced
such high fitness in a different environment. We hypoth-
esise that the same kind of environmental tuning is more
difficult with the NoGas class.

The tuning of generated patterns is closely related
to our second hypotheses regarding useful properties in
the GasNet class for adaptive behaviour; the ability to
switch between stable states, in other words a discontin-
uous change of behaviour determined by external input,
and the ability to mediate such switching. This is clearly
possible to achieve without gas modulation, but the fea-
tures of the gas diffusion mechanism allow such a switch
to take place over several time-steps, through the build-
up of gas concentration levels. This was seen in the func-
tionally equivalent mechanisms, where the switch from
rotation to straight-forwards motion was inhibited by
bright input, only when such bright input was received
over several time-steps. Thus the switching can be based
on input patterns received over time, not just at a single
time-point.

Finally, the ability to filter out noisy input is straight-
forward to produce when using the GasNet controller
class, also through requiring that input be consistent

over several time-steps. This was seen in a number of
GasNet controllers, where build-up of gas concentration
was used for filtering sensory input. Thus bright flashes
and other noisy environment effects were efficiently ex-
cluded by the GasNet solutions.

We propose that the crucial property of the GasNet
class is temporal adaptivity ; the ability to be tuned to
the specific temporal characteristics of the environment.
In the next section we test this through re-evolving so-
lutions in modified environments.

Re-evolution of controllers

Functionally equivalent controllers

The hypothesis that the functionally equivalent GasNet
timing mechanism is easier to tune than the function-
ally equivalent NoGas mechanism can be investigated
through the behaviour of the controllers in environments
with modified properties. In this section, we analyse
the controllers when evaluated in two separate environ-
ments, where the robot motor speeds are respectively
set to double and quarter the usual motor speeds. This
has the effect of making the robot move at a different
speed in the arena, in particular spinning past the two
shapes at very different rates to the speeds encountered
during the original evolutionary phase. Note that the
environments could similarly be modified through alter-
ing the size and properties of the shapes, and/or the size
of the arena. Other modifications could also investigate
the effect of re-evolving from lesioned or similarly mod-
ified control networks. However, in this work we focus
on modification of the robot motor speeds.

We would expect the timing mechanisms to be affected
by such speed change, with the time spent spinning past
the triangle and square much shorter in the double speed
environment, and much longer in the quarter speed en-
vironment. However, the hypothesis that the GasNet
mechanism is in some sense easier to tune to the particu-
lar properties of the environment can be tested through
seeding the controllers back into the evolutionary pro-
cess, with fitness based on evaluation in the modified
environments. We can then re-run the evolutionary pro-
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Double speed Quarter speed
GasNet NoGas GasNet NoGas

Number of cases 200 200 200 200
Mean evaluated fitness (σ) 0.27 (0.13) 0.26 (0.18) 0.35 (0.27) 0.29 (0.19)
Mean re-evolution generations (σ) 107 (190)∗∗ 240 (363) 108 (229) 116 (252)
Median re-evolution generations 36∗ 49 13∗∗ 21

Table 2: Data for samples of twenty GasNet and twenty NoGas controllers, re-evolved in two modified environments. See
table 1 for details.

cess from the controller seeds, assessing how long before
controllers of 100% fitness are again achieved. In this
re-evolution, we allow only the parts of the genotype in-
volved in the timing mechanism to be affected by the
evolutionary process; we are assessing how easy it is to
modify the actual mechanism itself, not the rest of the
network.

Results for re-evolution studies of the two controllers
are given in table 1. In the double speed environment,
both controllers drop in fitness to well under 20%, but
there is no significant difference between the two con-
trollers in this environment. However, there is massive
difference in the number of generations required to re-
evolve controllers of 100% fitness; the GasNet controller
is much easier to tune to the modified properties of the
environment (10 generations on average compared with
409). In the quarter speed environment, the GasNet
controller achieves significantly higher fitness than the
NoGas controller, but the difference in the number of
generations required to reach 100% fitness controllers is
much larger than predicted by this fitness difference (the
generations of re-evolution required for the NoGas con-
troller to reach the fitness level of the GasNet controller
does not affect the results). So in both modified environ-
ments, the GasNet controllers are much easier to evolve
successful controllers than would be predicted from their
fitnesses.

Sample of controllers

It may be argued that the two functionally equivalent
controllers investigated are based on a mechanism which
is in principle easier to produce using the GasNet con-
trol class. Thus re-evolving the timing mechanism in
modified environments will unfairly favour the GasNet
controller. By contrast other mechanisms may favour
NoGas classes; here we counter this argument through
extending the re-evolution analysis to a random sam-
ple of forty previously evolved GasNet and NoGas con-
trollers of 100% fitness.

The forty controllers were used as initial seeds for the
evolutionary algorithm, which was run until controllers
once more showed 100% fitness, with fitness evaluated
in the same double- and quarter-speed environments de-
scribed in the previous section. Table 2 shows the results
for the two conditions, averaged over ten evolutionary

runs of each of the forty controllers. The results are
not as striking as those from the functionally equivalent
controllers, lending weight to the hypothesis that the
previous analysis unfairly favoured the GasNet mecha-
nism. However, the GasNet controllers still showed sig-
nificantly faster re-evolution than the NoGas controllers.
In the double speed environment, both samples of con-
trollers fell to average fitnesses of 0.26, but the GasNet
controllers on average re-evolved in 107 generations com-
pared with 240 generations for the NoGas controllers. In
the quarter speed environment, the differences are much
smaller, with comparable mean numbers of generations
for re-evolution, although there is some evidence of faster
evolution from the median numbers of generations. Thus
from our sample of GasNet controllers, we also see evi-
dence of significantly faster re-evolution to modified en-
vironments; the GasNets are more tunable.

Summary

The detailed analysis of a number of GasNet and NoGas
controllers allowed us to frame two hypotheses regarding
the suitability of the GasNet class to robot control.

First, the ability to both produce and modify cen-
tral pattern generation output was seen to be central
to a number of evolved control solutions. This seems
surprising. We are not investigating such behaviours as
walking and swimming gaits, or rhythmic feeding, where
behaviour is often based on central pattern generation.
Our visual shape discrimination task might not at first
sight appear to be related to such pattern generation.
However, a number of GasNet controllers were seen to
use pattern generation subnetworks in the final evolved
behaviour.

Second, the ability to switch between dynamical states
dependent on external input, and the ability to mediate
this switch over a number of time-steps was seen to be
extremely useful both in behaviour generation and fil-
tering environmental noise. From analysis of the func-
tionally equivalent GasNet and NoGas controllers, we
argued that the kinds of active perception timing strate-
gies able to mediate such behaviour switching and noise
filtration were much easier to evolve using the GasNet
class. To develop and tune the NoGas timing mechanism
required the construction of a complex fully-connected
circuit, while the corresponding GasNet timing mecha-
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nism was based on the build-up and decay of gas.

The twin hypotheses that GasNet classes were more
amenable to both the development and tuning of pattern
generation and the development and tuning of switching
mechanisms were supported by the re-evolution stud-
ies. We saw that the functionally equivalent GasNet
controller was much easier to tune to a modified envi-
ronment than the corresponding NoGas controller. To
a lesser extent, although still significant, this same re-
evolution tunability was seen over a large sample of pre-
viously evolved controllers.

So can we draw any conclusions from this work on
what makes an evolvable network class for the visual
discrimination problem? The simple answer is yes. The
key feature of the GasNets seen to be useful on this task
is the ability to smoothly adapt to the temporal char-
acteristics of the environment. This encompasses the
initial development and subsequent tuning of the con-
trollers to the detailed properties of the robot and envi-
ronment in which it finds itself. Included in this ability
to smoothly adapt to the temporal characteristics of the
environment, is the ability to generate a rich variety of
temporal patterns, through the interaction of the gas
diffusion mechanism and the electrical synaptic mecha-
nism. The different time courses over which these two
mechanisms operate was seen to be crucial to this pat-
tern generation.

Temporally adaptive networks

In the GasNets investigated in this paper, evolved con-
trollers used the modulation of neuron transfer functions
as a process operating over a different time course to that
of the underlying network synaptic activity. The particu-
lar plasticity mechanism used, concentration-dependent
neuronal modulation, allowed the GasNet controllers to
easily generate and tune temporal patterns, and tune be-
haviour to the particular temporal characteristics of the
environment. And this was seen to have a direct effect
on the evolvability of the GasNet class.

By showing that the evolvability of the GasNets is due
to this principle of temporal adaptivity, we have pro-
vided some support for the intuition of many evolution-
ary robotics practitioners, namely that robot controllers
operating in the real world must incorporate temporal
structure, and that the evolutionary process must be
able to easily adapt that structure. For example, Har-
vey (1993) makes the point that “. . . in environments
where physical events have natural time-scales, the di-
mension of time is not an optional extra, but fundamen-
tal.” Similarly, Gallagher and Beer (1999) state that
“. . . nontrivial behavior requires the integration of ex-
periences across time and the ability to initiate actions
independent of an agent’s immediate circumstances.”

On this fundamental principle of temporal adaptiv-
ity, the GasNet neural network class falls squarely into

a larger class that is likely to contain other networks
with temporally modifiable properties, such as continu-
ous time recurrent networks (Beer and Gallagher, 1992),
pulsed neural networks (Maass and Bishop, 1999), and
networks with time-lagged synaptic activity (Harvey,
1993). However, we argue that simple recurrent net-
works such as the NoGas are not members of this class;
although activity is retained over time and the connec-
tion architecture may be arbitrarily modified, it is not
straightforward for the evolutionary process to tempo-
rally modify the activity of the network. For example,
as seen in the NoGas timer, it is not easy to setup an
effect that lasts for some given period of time. Similarly,
generating and tuning patterns is more difficult with sim-
ple recurrent networks (Smith, 2002). It seems plausi-
ble that if we are to further develop evolvable artificial
neural network classes for generating adaptive behaviour
over time, the starting point must be from within the
class of temporally adaptive networks.

Finally, we come back to the general direction in which
this paper has aimed; identification of the fundamental
properties necessary for adaptive behaviour. We have
shown how analysis of successful solutions on one task
can identify more general properties of the solution class
that are potentially useful over a wider range of prob-
lems. It is of course necessary to apply the methodology
developed here to both a number of robot control tasks
and a number of solution classes, in order to fully support
the temporally adaptive hypothesis presented in this pa-
per. However, further analysis may also shed light on
other fundamental properties necessary for the genera-
tion of adaptive behaviour over time. Such analysis of
more complex adaptive systems can, in principle, simi-
larly illuminate the general conditions necessary to make
the transition from specific to generic response systems.
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