
in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 264–273 1

SOS++: Finding Smart Behaviors Using Learning and Evolution

Bertrand Mesot1, Eduardo Sanchez1, Carlos-Andres Peña1 and Andres Perez-Uribe2

1Swiss Federal Institute of Technology, EPFL-LSL, Lausanne (Switzerland)
2Swiss Federal Institute of Technology, EPFL-LSA, Lausanne (Switzerland)

Abstract

We present SOS++, a bioinspired method combining
evolution and learning, allowing the automatic design
of the controller of autonomous agents, described as a
finite-state machine. The application of this method to
well-known problems, for example the follow-up of a trail
or the resolution of a maze, led to the emergence of some
behaviors we could qualify as intelligent. Moreover, it is
possible to use the method in a hierarchical way in order
to obtain complex behaviors starting from a set of basic
actions. We have used an algorithm which is a variation
of reinforcement learning with a reward adapted to the
degree of uncertainty of the performed prediction.

Introduction

According to Brooks’ work (Brooks 1999), the best way
to program an autonomous robot is to provide it with
a set of basic behaviors and to let more complex behav-
iors emerge by interactions between the robot and the
environment.

The robot’s creator must design the body, thus choos-
ing a set of possible basic actions and perceptions: the
actions are implemented by actuators (motors, for exam-
ple), and the perceptions of the environment are acquired
by sensors. The designer then implements some sim-
ple behaviors as a sequence of basic actions commanded
by a controller, generally a neural network. More com-
plex behaviors appear in an autonomous way, by learning
and/or evolution of the controller while interacting with
the environment. This same principle can be applied, in
a more general way, to the design of autonomous agents.

In this paper we present another approach, using fi-
nite state machines (FSM) to implement the controller.
As in the preceding case, the FSM controlling a complex
behavior is the result of an autonomous process of inter-
action with the environment, using bioinspired methods
of evolution and learning.

After a section explaining the bioinspired basis of our
approach, we present a first method using a variation
of reinforcement learning illustrated by a solution of the
well-known Santa Fe trail problem (Koza 1992). Evo-
lution is not always important for this first method (a

solution for the Santa Fe trail is found during the first
generation, for example) and, in fact, proves to be unable
to provide solutions to more complex problems (the Los
Altos Hills trail (Koza 1992), for example). In the next
section, we present a second method, using two hierarchi-
cal levels of FSM: we added a set of FSM-implemented
macroactions to the basic simple actions. This method
finds a solution to the problem of Los Altos trail, but the
designer has a more important contribution: the first hi-
erarchical level of FSM, implementing the macroactions,
is the result of her work and not the result of evolu-
tion or learning. We then present a third method, where
evolution plays a greater role, that finds very interesting
solutions for complex problems such as the Los Altos
trail or the Wiering and Schmidhuber maze (Wiering
& Schmidhuber 1997) using only the set of basic actions
(e.g., our method is able to find sequences of actions that
can be reused at different times, thus providing an au-
tomatic definition of macroactions and consequently of
hierarchical behaviors). We finish with a concluding sec-
tion and an outline of our future work, using real robots
as examples.

Biological Inspiration

Evolution has provided each animal species with a set
of basic actions which make it possible for its members
to interact with their environment. From one species to
another one can find similar actions but their implemen-
tation differs: evolution has found different solutions in
each case. The execution of one of these actions, us-
ing several organs of the animal’s body, is commanded
by its nervous system (the brain for the more complex
animals).

The realization of a given task implies the execution of
several actions in a given sequence: it is a behavior. In
this case, learning can play a greater role than evolution.
The sequence of actions can be culturally transmitted to
an individual during its life time, without need to wait
several generations so that it gets genetically coded in its
DNA (thus being transformed into an additional basic
action).

This body-brain duality, (organs of the action)-

2 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 264–273

(command of the action), exists also in digital systems,
as the pair (data path unit)-(control unit). In these
cases, the data path unit contains all the elements of
storage and data processing, while the control unit is a
FSM responsible for sequencing the operations carried
out in the data path unit.

In the case of an autonomous robot, the duality is
clearer: the various sensors and actuators play the body
role and its controller plays the brain role. The design
of the robot’s body is not left to evolution, as this would
take an unbearably long time. Therefore, in the large
majority of cases it is the task of an engineer: the design
of the robot always includes the choice of its sensors and
actuators. Although this task is far from being easy, it is
a problem within a good engineer’s reach. On the other
hand, the design of the brain (the robot’s controller) is
much more difficult, particularly when one wants to see
it carrying out complex,“intelligent”, behaviors. For a
living being, intelligence is the capacity to individually
find the behavior to respond to an excitation of its envi-
ronment or to solve a complex problem.

As with our analogy of living beings, it is common
to use neural networks to implement the controller of
autonomous agents. For these kind of networks, there
are several well-known and tested learning algorithms,
thus making the design easier: the designer chooses the
starting network structure and the task is executed by
self-organization, following a given learning algorithm.
A more recent variation of this methodology uses ge-
netic algorithms to evolve the neural network structure
or some learning parameters (Nolfi & Floreano 2000).

Our approach is quite different, oriented towards a
hardware implementation of the controller: the body of
the agent, an autonomous robot for example, is designed
by traditional methods, while we consider the controller
as a FSM, commanding the possible actions of the body.
A FSM is fully described by two elements: the set of its
states and the transitions between them. In a Moore
FSM, an action is associated to each state (Sanchez
1998). We use a genetic algorithm to find the set of
states-actions pairs used by the learning algorithm. A
variation of the reinforcement learning, a learning algo-
rithm well known in the field of neural networks, is used
to dynamically build the interconnections between the
states. Some of the learning parameters are also calcu-
lated by the genetic algorithm.

To design a controller starting from its FSM descrip-
tion is a classic problem for digital systems engineers. In
addition to the ease of implementation, this representa-
tion gives a much higher level of interpretability when
compared to neural networks. Indeed it is much eas-
ier to explain and interpret a behavior starting from its
FSM representation than of that of the neural network.
The possibility to understand the way the solution works
can help us when designing new systems or optimizing

existing solutions.

First Method: SOS, A Variation of

Reinforcement Learning

Reinforcement learning (Sutton & Barto 1998) is an it-
erative mathematical method rendering an agent able to
learn how to carry out a given task while interacting with
its environment by the means of rewards.

At each instant t, the agent receives a representation of
the state of its environment, st. According to this infor-
mation, the agent carries out an action selected among
those which it is able to realize (this selection can be
seen as a prediction). At the next moment, it receives
a reward of value rt and the environment passes to a
new state st+1. To correctly carry out a given task,
i.e. to correctly learn it, the agent must seek to maxi-
mize the sum of the obtained rewards: in other words, it
must minimize the temporal-difference error, calculated
as the difference between two predictions at successive
moments.

For the choice of the action, the agent uses a value
function, generally implemented as a lookup table, where
each line corresponds to a state of the environment and
each column to a possible action of the agent. Each en-
try in the table contains an action value, Q(s, a), giving
the maximum reward that an agent can hope to receive
when, being at state s, uses action a. Learning implies
correctly updating the values of the lookup table, as a
function of the rewards obtained. This update is calcu-
lated using the following equations:

δ = rt + γ Q(st+1, at+1)−Q(st, at)

Q(st, at)← Q(st, at) + α δ

where δ is the temporal-difference error, rt is the reward
obtained at time t, and α and γ are learning parameters.

With this method, the agent is able to correctly learn
a task only if the state of the environment gives sufficient
information: the state coding thus has a great influence
on the learning quality. Our approach is completely dif-
ferent: we do not code the state of the environment but,
quite simply, we use values from some of its parameters
(those which are accessible to the input organs or sensors
of the agent). These inputs of the agent (perceptions)
will allow it to change its internal state: we thus learn
the states of the agent’s controller and not those of the
environment. In this way, we use raw data from the envi-
ronment, without needing to interpret them and to code
them as states.

The controller of the agent is seen now as a FSM,
where each state summarizes all the knowledge an agent
needs to plan the continuation of its behavior. In addi-
tion, the transition between two states is done according
to the perceived input. In the case of a Moore FSM, an
action is associated to each possible state. Consequently,

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 264–273 3

O0 On

S0 · · · Sm · · · S0 · · · Sm

S0 0.5 0.3 0.6 · · · T (S0, On, Si)
...

...
...

...
Sm T (Sm, O0, Si) · · · T (Sm, On, Si)

Figure 1: Lookup table of estimations of the state val-
ues T (Sm, On, Si), where Sm is the current state of the
environment, On is the current observation of the envi-
ronment made by the agent, and Si is the next state.

the relationship (state of the environment)-(action of the
agent) of the traditional reinforcement learning now be-
comes a relationship (current state of the agent, input)-
(next state of the agent). In other words, to learn now
means to find the appropriate transition between two
states of the agent for a given input.

FSMs are generally represented as state diagrams or,
in an equivalent way, as lookup tables called state tables.
We use a table inspired by state tables to replace the ta-
ble of state-action values Q(s, a) in our method. Figure
1 shows the format of such a table: there is a line per
given state Sk and m columns (next states Si) per input
Oj . To each one of these triplets (an entry of the table)
is associated a value T (Sk, Oj , Si), giving the maximum
reward that the agent can hope to receive when, being in
the state Sk, and perceiving the input Oj , it chooses Si

as the next state of Sk. Like in traditional reinforcement
learning, to learn means to update the table. Thus, the
equations for learning become in our case:

δ = r + γ T (s′, o′, s′′)− T (s, o, s′)

T (s, o, s′)← T (s, o, s′) + α δ (1)

where r, α and γ hold the same meaning as previously
The preceding equations perform the adaptation of a

state-value function implemented by the T (Sm, On, Si)
table. There is no action selection mechanism in our sys-
tem. Instead, there is a single action associated to each
state, as this is the case for a Moore FSM. Therefore, we
must suppose that the state-action associations are the
right ones. Indeed, we achieve this by using a genetic
algorithm, as we will soon explain.

An individual (agent) of the population used by the ge-
netic algorithm (Michalewicz 1996; Vose 1996) is repre-
sented by a fixed-size genome, containing as many genes
as Sk states (note that the genome encodes a fixed max-
imum number of states, it is learning which further re-
duces this number). The value of a gene is an integer in-
dicating the action associated to the corresponding state.
For example, the genome 212 indicates that we work with
a FSM containing a maximum of three states, and that
state S0 is associated to action 2, S1 to action 1, and

S2 to action 2. At each generation, the less adapted
2
3 of the population is replaced by new individuals re-
sulting from the crossover of the remaining third (the
elite, the fittest). The parents of these new individuals
are selected by roulette wheel, and the offsprings may be
modified by mutation. The crossover operation is done
by cutting the two genomes in a single point, and al-
ways at genes’ border. The mutation, carried out with a
probability PMUT, randomly gives a new valid value to
a gene. It is significant to notice that not all the genes
of an individual are necessarily used in the solution of
a problem: the learning will be given the responsibility
to interconnect needed states, leaving the other states
without connection.

To solve a given problem, we start by creating a ran-
dom population. Then, the fitness of each individual is
calculated as a function of its learning capabilities. This
value is then used to determine the individuals autho-
rized to reproduce. During its life, each individual thus
uses the reinforcement learning method described previ-
ously, formalized in the following way, under the name
of SOS (State-Observation-State) algorithm (Sanchez &
Perez-Uribe & Mesot 2001):

1. Initialize the table. ∀s∀o∀s′ : T (s, o, s′) = c where c

is a constant equal to the maximum possible reward
(optimistic initialization).

2. Place the agent at the initial position: define s = S0

and observe the input o corresponding to the position.

3. Choose s′ such that T (s, o, s′) =
maxi∈[0,|S|[T (s, o, Si), where S is the set of the
states. If several future states are possible, take that
with the smallest index i.

4. Go to the state s′, carry out the action corresponding
to this state (given by the genome) and recover the
reward r.

5. Observe the input o′ corresponding to the new
position and choose s′′ such that T (s′, o′, s′′) =
maxi∈[0,|S|[T (s′, o′, Si). Again, if several cases are pos-
sible, choose the smallest index i.

6. Update the value T (s, o, s′), using the equation:

δ = r + γ T (s′, o′, s′′)− T (s, o, s′)

T (s, o, s′)← T (s, o, s′) + α δ

7. Let s = s′, s′ = s′′, o = o′ and go to 4 as long as the
end condition is not reached.

The Santa Fe Trail

The first problem on which we tested our algorithm is the
Santa Fe trail, proposed by Christopher Langton (Koza
1992). An artificial ant is placed on a grid of 32 × 32

4 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 264–273

cells, of which some contain food (black cells in figure
2). The goal is to collect, in a limited number of steps,
the greatest quantity of food, starting from the top left
position. The ant “sees” only one cell in front of it:
at every step, it receives an input of value 1 if there
is food in the cell and 0 if not. At each step of the
course, the ant can perform one of four possible actions,
corresponding to the following genes: 0 (NOP), 1 (turn
left), 2 (turn right) and 3 (move ahead a step). With
each unit of collected food, the agent receives a positive
reward (r = 1); in all the other cases, the reward is null
(r = 0). The problem is to find a strategy enabling the
ant to follow the trail in the most direct possible way, in
spite of the trail’s discontinuities.

We used our algorithm with the parameters given in
the following table:

POP SMAX STEPS TRIALS PMUT
100 10 500 400 5%

where POP is the size of the population used, SMAX
is the maximum number of states (i.e. the size of the
genomes), STEPS determines the maximum number of
actions which the agent is authorized to make in order
to achieve the task, and TRIALS specifies the number
of learning iterations (i.e. the number of times that the
agent is placed back at the starting point and that a new
chance is given to it to find a good strategy). Finally,
PMUT indicates the probability of genome mutation.
In addition, the learning parameters use the following
values: α = 0.6 and γ = 0.9. For the evolution, the
measurement of fitness more strongly supports the indi-
viduals who accumulate maximum units of food, rather
than those which have a minimum of states, and, finally,
those which use a minimum of actions. Therefore we
compute the fitness according to the following equation:

f = w1arew + w2(|S| − ast) + w3(STEPS − astp) (2)

where arew is the sum of all rewards obtained by the
agent, ast is the number of used states and astp is the
number of steps needed to go all over the trail. These
values are those computed during the last trial of the
agent on the trail. For this problem, the weights wi are
set as follows: w1 = 105, w2 = 103 and w3 = 1. Thus
individuals with good fitness will tend to collect as many
foods pellets as possible, using the smallest number of
states and steps.

In less than 10 generations, our algorithm is always
able to find a solution requiring only 5 states, after about
30 learning iterations. One of the minimal solutions
very often obtained is presented in figure 2. By tak-
ing a glance at this solution, some remarks can be made.
Firstly, the evolution action can be regarded as unim-
portant: indeed, good solutions are always obtained af-
ter less than 10 generations and, in certain cases, even

(a)

0/2 4/2

5/3

2/2 1/2

0

1 1

0

0

1

1

0

0

1

(b)

Figure 2: a) The Santa Fe trail and b) the best state
diagram found by the SOS algorithm. The numbers on
the arrows indicate the input value (0: no food, 1: food),
the numbers on the circles indicate the state and the
associated action respectively (0: NOP, 1: turn left, 2:
turn right, 3: move ahead of a step).

at generation 0. This implies that we are dealing with
an easy problem since the learning can use virtually any
genome in order to obtain a solution, provided that it
contains at least two actions. Secondly, only two actions
out of four are used: turn right (2) and move ahead of
a step (3). Last but not least, the FSM representation
renders the solutions highly understandable. Indeed, the
analysis of the state diagram of figure 2 enables us to eas-
ily understand the behavior of the agent: each time the
ant perceives an input of value 1, it passes to state 5,
where it carries out the action 3 (move ahead of a step).
Not perceiving food forces it into a cycle of exploration,
turning each time to the right (action 2) to seek food.
If food is not found after a full rotation, the ant moves
straight ahead. In short, trail discontinuities are always
in straight lines with food and their end can be deter-
mined by a simple rotation of the ant.

Second Method: SOS+, Learning with

Hierarchical Actions

The simplicity of the Santa Fe trail led us to test another
problem: the Los Altos Hills trail, proposed by Koza
(Koza 1992). This trail is in fact an extension of the
Santa Fe trail, since eight deviations were added there in
its final portion (see figure 3). Among these additions,
four are deviations no longer presenting any direction
guide (as in the Santa Fe case): inside a discontinuity,
the agent cannot determine the direction to follow simply
by turning on the spot.

Los Altos Hills

Initially, our SOS algorithm did not find a solution to
the problem, even by using great values for parameters

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 264–273 5

Figure 3: The Los Altos Hills trail

STEPS and TRIALS (2000 and 1000 respectively): no
agent was able to collect the totality of the 157 units
of food. This observation led us to suppose that this
problem is too complex to be entirely solved with the
basic actions NOP (0), turn left (1), turn right (2) and
move ahead of a step (3). This is the reason for which
we brought two new actions (in fact, Koza had also
been obliged to add other actions for his solution). Our
approach is hierarchical: the two new actions, called
macroactions, are in fact other FSMs using the four basic
actions. The two following paragraphs give a description
of the behavior associated with each of the two macroac-
tions we added.

Action 4 With this action, the agent is able to move
ahead two steps, to turn on itself, then to return to its
initial position but in the direction opposed to that which
it had at its departure. If during this action a unit of
food is found, the macroaction stops and the machine
goes to the next state corresponding to an input equal
to 1. If the macroaction comes to an end, the next state
is selected according to the value of the input at this
time. The sequence of the actions corresponding to this
macroaction is as follows: 3 3 1 1 1 2 3 3.

Action 5 This action is similar to the preceding action,
but with an intermediate exploration: after a step ahead,
the agent turns on itself “to observe” if at this stage
there is not already a unit of food showing the way to
be followed; if this is not the case, it still moves ahead a
step, then turns on itself and finally returns to its initial
position, but in the direction opposed to that which it
had at its departure. The principle of connection and
end of this action is the same one as that of action 4.
The sequence of the actions carried out is as follows: 3

8/5 10/1

0/4

5/5 4/4

0

1 1

0

0

1

1

0

0

1

Figure 4: The best state diagram found by the SOS+ al-
gorithm for Los Altos trail. Actions 4 and 5 are macroac-
tions.

1 1 1 1 3 1 1 1 2 3 3.

The parameters of the algorithm used for this problem
are given in the following table:

POP SMAX STEPS TRIALS PMUT
500 15 10’000 500 5%

The values of the learning parameters α and γ are still
0.6 and 0.9, respectively. The fitness is computed using
the equation 2, where the weights wi are set as follows:
w1 = 107, w2 = 105 and w3 = 1.

After less than 10 generations, and less than 100 learn-
ing iterations, the SOS+ algorithm finds an agent which
collects all 157 units of food in 963 actions, by using 5
states out of the 15 available in the genome. Figure 4
shows one of the solutions obtained: it required only 17
learning iterations, and 8 generations.

As expected, this solution is very similar to that of
Santa Fe, with a more thorough exploration obtained
thanks to the use of macroactions 4 and 5. If the number
of states seems very small (5), it should not be forgotten
that macroaction 4 breaks up in fact in 8 simple states
and macroaction 5 in 12: indeed, at the lowest level of
hierarchy, the number of states is equal to 41 (i.e., taking
into account only the simple actions used in our first
method).

Third Method: SOS++, Adaptive

Rewards plus Evolution of Learning

Parameters

Although the macroactions previously described make
it possible to solve the problem of Los Altos Hills, this
approach presents several disadvantages. First of all,
the macroactions must be defined by the designer, who
thus takes a very significant part in the resolution of the
problem. Then, their presence in the solution can imply

6 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 264–273

a significant increase in the number of basic states, and
the understanding capability gained by their addition is
obtained with the detriment of this number.

These disadvantages led us to more thoroughly ana-
lyze the failure of the first version of algorithm SOS,
and therefore try to improve our method once more. A
first reason to this failure comes from “over-learning”:
indeed, as more of the first half of Los Altos Hills prob-
lem is identical to the Santa Fe trail, our method quickly
obtains an agent able to efficiently traverse this part by
receiving a very great reward. It then becomes very diffi-
cult to make the agent change its strategy for the second
part. The following subsection presents a solution to this
problem.

Interpreting α

To control this “over-learning” problem, our first ap-
proach was to analyze the role played by the two learning
parameters of the SOS algorithm, that of α more partic-
ularly.

Rewriting equation 1 as:

T (s, o, s′)← (1− α) T (s, o, s′) + α [T (s, o, s′) + δ]

allows us to note that the updated value of T (s, o, s′)
is composed by the sum of two expressions. The first,
(1−α) T (s, o, s′), is the current value of the table for the
transition (s, o, s′), weighted by a factor (1 − α). The
second, α [T (s, o, s′) + δ], represents the value corrected
by the learning for the same transition, weighted by a
factor α. In other words, α indicates the percentage that
the corrected value represents in the update of T (s, o, s′).
Consequently, it becomes obvious that the value of α

very strongly determines the learning quality and that it
must be therefore adjusted according to the problem to
solve. This is why it appeared necessary to us to include
α and γ in the genome of an individual. The genome
of an agent will be thus composed by a certain number
of integer values (the actions associated with the states)
and by two floating point values (the two parameters α

and γ).

Island Evolution

Another modification was introduced in the algorithm
in order to be able to process genomes of different size:
the total population is now distributed in several islands,
the inhabitants of each island having all the same size of
genome, different from that of the other islands. Regu-
larly, after a given number of generations, a given num-
ber of the best individuals of an island emigrate towards
another island, thus exchanging their advantages. The
sizes of the migrant genomes must adapt to that of the
destination island: if it is smaller, the genomes are cut;
in the other case, random genes are added. In all the
cases, all the individuals of an island preserve the same
size.

Adaptive Reward

In the first version of our SOS algorithm, the exploration
of new solutions is limited by way of choosing the next
state when several cases are possible, i.e. when all cases
present the same maximum value of T (s, o, s′). In this
case, one selects the state s′ that presents the smallest
index as the next state, and the other states will never
be visited (unless the corresponding values change, of
course).

In order to succeed with this limitation, we assign to
each possible transition a uniform probability to be used:
if there are n valid transitions, each one is assigned a
probability of 1

n
. This probability will be employed to

modify the reward granted to the agent after the choice
of the next state. A negative reward (punishment) must
be less significant if at the time of the choice of the tran-
sition there were several possibilities than if there was
only one of them (i.e., a certainty should be punished
more than a doubt, when it proves to be incorrect). In
an equivalent way, a good choice of transition is rewarded
more if there were several possibilities than if there was
only one of them.

To quantify this uncertainty, we use the Shannon en-
tropic measurement (Shannon 1948):

H = −

n
∑

i=1

pi · log(pi)

where pi is the probability of the ith choice.
As in our case the choices are equiprobable, one has

pi = p = 1
n

where n is the number of choices. This leads
to a simpler formula for the entropy:

H = − log

(

1

n

)

= log(n)

According to the assumptions formulated previously,
the reward r must be proportionally weighted with the
entropy if r > 0, and conversely if r < 0. To model this
fact, we use weighting θ(n), defined by:

θ(n) =

1 + log(n) if r > 0
1 + log(1 + nmax − n) if r < 0
0 otherwise

(3)

where nmax is the maximum number of possible choices,
i.e. the maximum number of states.

The final version of the learning SOS algorithm, called
SOS++, is now:

1. Initialize the table. ∀s∀o∀s′ : T (s, o, s′) = c where c

is a constant equal to the maximum possible reward
(optimistic initialization).

2. Place the agent at the initial position: define s = S0,
r = 0 and observe the input o corresponding to the
position.

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 264–273 7

3. Choose s′ such that T (s, o, s′) =
maxi∈[0,|S|[T (s, o, Si), where S is the set of states;
if several states are possible, choose one of them
randomly.

4. Calculate θ1 = θ(n) using equation 3, where n is the
number of possible choices at the preceding stage.

5. Go to the state s′, apply the action associated to this
state (given by the genome) and recover the reward r.

6. Observe the input o′ corresponding to the new
position and choose s′′ such that T (s′, o′, s′′) =
maxi∈[0,|S|[T (s′, o′, Si); again, if several cases are pos-
sible, choose one of them randomly.

7. Calculate θ2 = θ(n) using equation 3, where n is the
number of possible choices at the preceding stage.

8. Update the value T (s, o, s′) using the equation:

δ = θ1 r + γ T (s′, o′, s′′)− T (s, o, s′)

T (s, o, s′)← T (s, o, s′) + α δ

9. Let s = s′, s′ = s′′, o = o′, θ1 = θ2 and go to 5 as long
as the end condition is not reached.

Los Altos Hills

Two tests were carried out on the problem of Los Altos
Hills, using the islands model in both cases for the evo-
lution and evolving the learning parameters. However,
in the first test, the agent used our first SOS algorithm
for learning, whereas in the second test, SOS algorithm
with adaptive reward was used. For the two cases the
agent has only the 4 basic actions: NOP (0), turn left
(1), turn right (2) and move ahead of a step (3).

For the first test, the values of the parameters are as
follows:

NISL ISLPOP NGBM NEMIG
9 100 5 3

STEPS TRIALS PMUT PREP
2000 1000 5% 75%

In the first table, NISL is the number of islands, ISLPOP
is the number of individuals per island, NGBM is the
number of generations before migration, and NEMIG is
the number of emigrants. In the second table, STEPS,
TRIALS and PMUT have the same meaning as before
and PREP gives the percentage of individuals replaced
at each generation.

For this test, the islands were populated with genomes
of size 40, 50, 60, 70, 80, 90, 100, 30, and 20 (one size per
island). The fitness of each individual is computed using
the equation 2, where the weights wi are set as follows:

0/3

76/1

84/0

98/3

11/1

17/1

52/3

51/3

94/2

43/2

38/3

95/2

0

0

0

0

00

0

0

0

0

0

1
*

1

1

1

1
1

1

1

1

1
1

Figure 5: The best state diagram found by the SOS++
algorithm for Los Altos trail, without adaptive reward
and with the NOP action.

w1 = 107, w2 = 104 and w3 = 1. The best solution was
obtained on island number 6, after 6 generations. It uses
only 12 of the 100 available states, making the course of
the entire trail in 999 actions and using only 283 learning
iterations of the 1000 available. The end values of the
learning parameters for this solution were: α ≈ 0.38 and
γ ≈ 0.98. The state diagram obtained is given in figure
5.

An analysis of this graph enables us to understand the
behavior of the agent. It begins with state 0 (move ahead
of a step) and it remains there as long as it perceives an
input 1; as soon as it is no longer the case, it enters in an
exploration cycle starting at state 76. This cycle leads it
to carry out the actions sequence 1 0 3 1 1 3 3 2 2 3 2,
which corresponds to explore a cell on the left (1 0 3 1
1 3), then a cell on the right (3 2 2 3), then to return to
the initial orientation (2). This behavior is very similar
to the macroactions which we previously defined for the
same problem, except that here it is found by learning.
If, during this cycle, the agent perceives an input 1, it
returns to state 0 to move straight ahead, until next dis-
continuity. It is interesting to note the presence of an
action NOP (even if this action has not been useful in
our experiments, we left it to respect the original specifi-
cation of the problem. Interestingly, it had always been
eliminated by the learning and evolution algorithm). In
fact, for learning, action NOP is as valid as the actions
turn left or turn right, since all three generate a null re-
ward; it is thus the evolution’s responsibility to select
better individuals, i.e. individuals not including in its
genome the action NOP. However, an individual collect-
ing all of the 157 units of food with only 12 states, as it
is the case in our solution, has an enormous advantage
over its colleagues. With such a large advantage, it is
unlikely to be dethroned before many generations.

8 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 264–273

0/2 39/3

33/3

7/2 34/3 2/2

10/3 12/3 20/1

8/2

1

0

0

1

0

1

0

0

1

0

1

0

1

1

1

0

1

Figure 6: The best state diagram found by the full
SOS++ algorithm for Los Altos trail, without the NOP
action.

For the second test we removed the state NOP. The
parameters used were the same as those of the first test,
but with 10 islands populated of genomes of size 100, 90,
80, 70, 60, 50, 40, 30, 20, and 15 (one size per island).
After only 3 generations, on island number 6, an individ-
ual was found able to traverse the trail in 679 actions,
using only 10 states out of the 40 of its genome. This
solution, which required 472 learning iterations, is given
in figure 6.

In spite of the low number of states used, this solu-
tion remains nevertheless interpretable and presents a
behavior quite surprising by its “intelligence”. Indeed,
the state diagram of figure 6 can be broken up into two
sub-FSM; the first, composed of the states 0, 39, 8, 33, 2,
34, 7, and the second of the states 34, 7, 10, 12, 20, which
corresponds to the two parts of the trail: that identical
to the Santa Fe trail and that added later by Koza. Our
method was thus able to differentiate between these two
parts, finding a solution for each one and interconnect-
ing them. For the first part, the agent leaves state 2 and
carries out the sequence of actions 2 3 2 2 3 (2) 3: when
it is facing a discontinuity, it explores a cell to the right
(2 3 2 2 3) and, if its still does not perceive anything
(input 0), turns right (2) and moves straight ahead (3).
This behavior makes it possible to navigate the complete
Santa Fe trail. To change behavior, the agent must find
the breaking point with Santa Fe, i.e. where the trail
added by Koza starts. The strength of this method is
shown when, in a surprising manner, this characteristic
is actually found at the point of the first contour added
by Koza. When it arrives there, the agent moves towards
the south and is in state 33, with an input 0. This con-
figuration leads it to turn right (state 2), then to move
ahead (state 34). At this point, the agent is directed
towards the west and perceives an input 1, which en-
ables it to know that it engages in the second part of the
trail (state 12). Here, it moves ahead, then turns left,

so as to move towards the south, and oscillates between
the states 12 and 34, which both make it move ahead.
When the agent arrives at the following contour, it is
at state 34 and perceives an input 0, turns right (state
7), then passes successively through states 10, 12 and
34 which make it move towards the next discontinuity.
When it reaches that point, it is at state 34 with an in-
put 0 and comes back to the first sub-FSM, which leads
it to move backwards (actions 2 2 3), going back a cell
(2 3) and turning to the west (2 3). At the end of this
set of actions, the agent is at a cell below the disconti-
nuity (on the gray cell). As input 0 is perceived on this
site, this leads the agent to perform this set of actions
for a second time, enabling it to find the trail, i.e. to
have an input 1 when it is at state 2. A passage through
state 33, then through state 2, enables it to be directed
towards the south; then, the return to state 33 enables
it to reach the next difficulty. The latter is passed in the
same way as the preceding one, i.e. by exploring a cell
on the right while going down, but this time the agent
is at state 34 when it finds the trail. The final part of
the trail is carried out thanks to the second sub-FSM.
The last difficulty is then overcome by using the same
exploratory behavior used in the previous discontinuity.

Wiering and Schmidhuber Maze

Reinforcement learning works particularly well for the
trail problems because a reward is possible at almost all
the steps of the problem. It is much more difficult to use
this learning method if the reward is given only at the
end, when the task is successfully accomplished. This is
the case of the Wiering and Schmidhuber maze (Wiering
& Schmidhuber 1997) (figure 7), a well-known problem
in literature, for which traditional reinforcement learning
does not give a solution.

Here, starting at the point S, the task of the agent
is to arrive at the point G while following the shortest
possible way. To accomplish this task, it can move in
the four cardinal directions, with actions coded in the
following way: 0 (west), 1 (north), 2 (east) and 3 (south).
The knowledge of its environment comes to it from 4
sensors, placed in the 4 directions: the value of the input
(observation) is thus the sum of the 4 sensors, weighted
by 1 (west), 2 (north), 4 (east) and 8 (south). Thus, for
example, walls in the west and the south of the agent
generate an input 1 + 8 = 9. In addition, the agent
obtains a reward of −1 (r = −1) when it runs up against
a wall, of 10 when it achieves the goal, and of 0 otherwise.
In the evolution, the fitness rewards individuals reaching
to the goal more than those using fewer operations to
do so, and finally those using fewer states. Therefore,
using the equation 2, we set the weights wi as follows:
w1 = 105, w2 = 1 and w3 = 102.

The evolution and learning parameters used in our
tests are as follows:

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 264–273 9

S

G

(a)

0/0 4/1

5/3 7/2

9

38 38

9

2

10
1

5

5 10

(b)

Figure 7: a) Wiering-Schmidhuber maze and b) the best
state diagram found by the SOS++ algorithm. The
numbers on the arrows indicate the input value com-
puted as a function of its four sensors (e.g., 0: no ob-
stacle, 1: obstacle to the right, 2: obstacle to the north,
6: obstacle to the north and to the west, etc.), the num-
bers on the circles indicate the state and the associated
action (0: west, 1: north, 2: east, 3: south).

NISL ISLPOP NGBM NEMIG
9 200 5 3

STEPS TRIALS PMUT PREP
250 1000 5% 75%

The evolution uses nine islands, populated by genomes
of size 20, 15, 10, 9, 8, 7, 6, 5, and 4 (one size per is-
land). After 548 generations, our algorithm found an
agent passing through the shortest way (28 actions) and
using only 4 states among the 8 available in its genome,
after 662 learning iterations, with α ≈ 0.24 and γ ≈ 0.93.
The state diagram corresponding to this solution is given
in figure 7. It is interesting to note that although the op-
timal solution required 548 generations, other solutions
are also obtained in the first generation, only by learn-
ing. These latter solutions generally use the shortest
way, but none have less than 7 states. This result is
very significant since, as told previously, the traditional
reinforcement learning never solves this problem.

Conclusions

The use of FSMs to realize the controller of autonomous
agents is preferable to the use of neural networks, when
planning to produce a hardware implementation: indeed,
this method is the most commonly used when designing
digital systems. Moreover, FSMs have the advantage of
their “legibility”: it is easier to understand a behavior if
it is described in this form than as a neural network, for
example.

Our method allows the automatic synthesis of the be-
haviors which an autonomous agent can perform with
this type of controllers. These behaviors emerge by evo-
lution and learning from the simple list of basic actions
with which the agent was equipped at its “birth”, and
from the interactions between these actions and the envi-
ronment. In addition, we can generalize the found solu-
tions: the FSM produced by the solution of the Sante Fe
problem, for example, can be used to correctly navigate
through a whole family of other trails without additional
learning (those where the trail discontinuities are always
in straight lines with food and their end can be deter-
mined by a simple rotation of the ant).

Evolution, used in a traditional way, allows one to find
good individuals who are able to achieve the expected
behavior simply by learning. A very fast evolution is
achieved thanks to the very small size of the genome,
made up simply of a list of actions associated with the
possible states of the FSM and two learning parameters.

Our learning method, derived from classical reinforce-
ment learning, modified by the use of an evolution of its
two learning parameters together with a reward adapted
to the uncertainty of the prediction performed, proved
very powerful. Indeed, learning can solve simple prob-
lems without evolution, finding a solution at the first
generation. In addition, problems for which traditional
reinforcement learning could not obtain any solution
were solved.

The discrete character of the values used for the obser-
vations of the environment could be regarded as a disad-
vantage if one wants to use this method with real prob-
lems, such as the control of autonomous robots. How-
ever, it is possible to consider our basic actions as FSMs
processing the lowest level of perception, and our method
can deal in these cases with higher level behaviors. In
fact, we are currently implementing the experiments de-
scribed in this paper with a real Khepera robot: a film
with these new results is viewable on the Web page of
our Laboratory (http://lslwww.epfl.ch).

References

Brooks, R. A. 1999. Cambrian Intelligence: The Early
History of the New AI. Cambridge, MA: MIT Press.

Koza, J. R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Se-
lection. Cambridge, MA: MIT Press.

Michalewicz, Z. 1997 Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer-Verlag, Heidel-
berg, third edition.

Nolfi, S., and Floreano, D. 2000. Evolutionary Robotics.
Cambridge, MA: MIT Press.

Sanchez, E. 1998. An Introduction to Digital Systems.
In Mange, D., and Tomassini, M., eds., Bio-Inspired
Computing Machines: Toward Novel Computational
Machines, 13. Lausanne: Presses Polytechniques et

10 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 264–273

Universitaires Romandes.
Sanchez, E., Perez-Uribe, A., and Mesot, B. 2001. Solv-

ing Partially Observable Problems by Evolution and
Learning of Finite-State Machines. In Liu, Y., Tanaka,
K., Iwata, M., Higuchi, T., and Yasunaga, M., eds.,
Evolvable Systems: From Biology to Hardware, ICES
2001, 267. Berlin: Springer-Verlag.

Shannon, C. E. 1948. A Mathematical Theory of Com-
munication. Bell Systems Technical Journal 27:379.

Sutton, R. S., and Barto, A. G. 1998. Reinforce-
ment Learning: An Introduction. Cambridge, MA:
MIT Press.

Vose, M. D. 1999 The Simple Genetic Algorithm. MIT
Press, Cambridge, MA.

Wiering, M., and Schmidhuber, J. 1997. HQ-Learning.
Adaptive Behavior 6:2.

