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Abstract

Processes that occur in many biological systems are not
synchronous, but are governed by asynchronous updat-
ing. Although some previous models of multi agent sys-
tems have incorporated asynchronous updating in an in-
formal or implicit way, the importance of asynchronous
behaviour has been largely overlooked. However, the
update scheme chosen is very important in determining
the overall system behaviour. We illustrate this point
using several updating schemes in simple models. The
implication is that care should be given to selecting an
update scheme that is appropriate for the modelling ap-
plication. We also observe that certain ordered asyn-
chronous processes play a role in emergent modularity,
an important process in the evolution of complexity in
living systems.

Introduction

Most biological systems are composed of many interact-
ing elements. The way in which elements update their in-
ternal states plays an important role in many processes.
Most published models of such systems update inter-
nal states in parallel and synchronously. However, we
show that state updating is asynchronous in biological
systems, and may be described as either Random Asyn-
chronous (RAS) or Ordered Asynchronous (OAS). The
recognition of such processes has far reaching implica-
tions for the way in which we model biological systems.
We also show that OAS processes have a role in emer-
gent modularity. This in turn may contribute to the for-
mation of dynamical hierarchies in biological systems.
Understanding such mechanisms is an open problem in
Artificial Life (Bedau et al. 2000).

Models of multi agent systems have rarely focused on
the temporal pattern of interactions within the system.
In particular, updating is usually assumed to occur syn-
chronously and in parallel. That is, all agents in the sys-
tem are assumed to update their state in a single pass,
and before any of the new states are allowed to influence
other agents. This assumes the existence of a “global
clock” that dictates the pace of all local processes in
the system. However, several authors (Thomas 1979;
Kanada 1994; Di Paolo 2000) (amongst others) have

pointed out that a global clock is not indicative of any
observed natural phenomenon. This raises the question
of how state updating should be handled in models.

We examine some different updating schemes in simple
models, and shows that the scheme chosen has a very
strong effect on the type of global behaviour observed.
We conclude that the choice of updating scheme is an
important part of the specification of the model, and
should reflect the purpose to which the model will be
used.

Finally, we observe that models using OAS updating
can be used to demonstrate the emergence of modularity.
Modularity is of increasing interest, since it is becoming
apparent that biological systems employ modularity to
cope with the exponential increase in complexity as these
systems grow in size (Green et al. 2001).

Asynchronous Processes in Biological

Systems

In many living systems, there is abundant evidence that
agents update their state asynchronously. The examples
below also show that these processes are ordered, and
demonstrate self-synchronisation as a mechanism that
forms and perpetuates modules.

Ants participating in a colony exhibit complex col-
lective activity. Ants do not work constantly, but
spend between 55% and 72% of their time resting, de-
pending on species (Cole 1991; Delgardo & Sole 1999;
Franks et al. 1990). Individual ants separated from
the colony display active and resting periods with an
aperiodic pattern. However, a whole colony displays a
synchronised periodic pattern of active and resting be-
haviour, with period of between 15 and 30 minutes.

Individual ants update their activity state au-
tonomously, but are able to adjust the update frequency
in response to interactions with other ants. Ants living
in a colony were observed to wake each other (Franks
et al. 1990). From these observations, it appears that
global synchronous behaviour in the colony arises from
local asynchronous behaviour. This behaviour has been
recognised in models, for example, Goss and Deneubourg
(1988).
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The behaviour of interconnected neurons in the brain
leads to global patterns of behaviour across the whole
brain. This activity does not exhibit stationary patterns,
but periodic, quasi-periodic and chaotic patterns (Free-
man 1992). There is no known mechanism such as a
global clock in the brain, yet neurons exhibit synchro-
nised behaviour for a time, suggesting a mechanism of
asynchronous updating as in the previous example.

Bushfires are propagated when fuel is heated until it
ignites. The rate of heating depends on the fire inten-
sity, the distance from the flames, the fuel moisture, and
so on. When a plant ignites, its neighbours ignite asyn-
chronously, with the order determined by heat accumu-
lation.

The competition of different species within a forest
system, coupled with catastrophe such a forest fire, leads
to a complex system of interactions that have been stud-
ied as a means of developing better management strate-
gies, among other reasons. Transitions between dif-
ferent community classes (e.g. rainforest, open sclero-
phyll woodland) require vastly different times to com-
plete (Noble & Slatyer 1980), so are examples of asyn-
chronous updating.

Asynchronous Processes in Models

The examples in the previous section suggest that asyn-
chronous updating is the default, rather than the ex-
ception, in natural multi agent systems. This raises the
question of what update method should be chosen in
models of such systems. This will depend on the pur-
pose of the model. Asynchronous models may provide
more realistic representations of natural systems than
synchronous models, and may provide a deeper under-
standing of system behaviour.

The majority of published models use synchronous
updating. This may be because little is known about
asynchronous updating, and how it may change the be-
haviour of the model. Asynchronous updating has been
incorporated in cellular models of bushfire, for exam-
ple, by using a list of cells due to ignite (Kourtz &
O’Regan 1971), or by adding extra states (Green 1983).
The asynchronous nature of forest succession has led to
the adoption of the semi-Markov model, (Howard 1971).
There have also been attempts to investigate the effects
of random asynchronous (RAS) processes in more ab-
stract models. Not surprisingly, RAS updating changes
the characteristics of a system. For example, Harvey and
Bossomaier (1997) have pointed out that stochastic up-
dating in RBNs results in the expression of point attrac-
tors, but no cyclic attractors, although they introduce
the notion of loose cyclic attractors. Kanada (1994) has
shown that some one-dimensional CA models, that gen-
erate non-chaotic patterns when updated synchronously,
generate edge of chaos patterns when randomised. Other
researchers have claimed that RAS models can exhibit

all the behaviour normally associated with synchronous
models. For example, Orponen (1997) has demonstrated
that any synchronously updated network of threshold
logic units can be simulated by a network that has no
constraints on the order of updates. However, this work
depends on a carefully crafted network connectivity that
is unlikely to be observed in natural systems.

Cellular Automata Models of

Asynchronous Processes

The relative merits of different updating schemes are not
well understood. An important research question is to
determine their characteristics and their suitability for
representing various kinds of multi agent systems. As
an initial survey, we have implemented CA models using
five distinct updating schemes. Source code is available
from http://life.csu.edu.au/˜dcornfor/masys.html.

The Clock scheme (Thomas 1979; Low & Lapsley
1999) assigns a timer to each cell. The period of each
timer is set at random, as is the initial phase of the
timer. The model is evolved by incrementing the values
of all timers at each time step, then checking the val-
ues. Those timers that have exceeded the value of their
period variable are updated in order, with new states
being implemented immediately. After a cell has been
updated, its timer is set to zero.

In the Cyclic scheme, a node is chosen at each time
step according to a fixed update order. This order is
decided at random during initialisation of the model.
This follows Kanada (1994).

In the Random Independent scheme (Harvey & Bosso-
maier 1997), one cell is randomly selected for update at
each time step. Subsequent selections are independent
of each other.

The Random Order scheme (Harvey & Bossomaier
1997), makes a list of all cells at each time step, and
sorts them into a random order. It then uses this list to
decide which cell to update. In this variant, each cell is
updated once only for every time step, but the order of
updating is random.

The Synchronous scheme is included for comparison.
It has been described in many papers, and its properties
are well-known (Wolfram 1984). At each time step, the
state of each cell is calculated, but held in a temporary
store until all states have been calculated. Then the cells
are all updated to their new state synchronously.

These five schemes were implemented as a one dimen-
sional CA having 250 cells and 2 states, with each cell
connected to its two neighbours and itself. Further de-
tails are provided in Cornforth et al., (2001). For each
rule, the five models were initialised to random states.
Time space diagrams were obtained, each one represent-
ing the evolution of the model from initialisation for the
first 500 time steps.

A few of the more interesting results from our prelim-
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behaviour for a time, suggesting a mechanism of
asynchronous updating as in the previous example.

Bushfires are propagated when fuel is heated until it
ignites. The rate of heating depends on the fire intensity,
the distance from the flames, the fuel moisture, and so on.
When a plant ignites, its neighbours ignite
asynchronously, with the order determined by heat
accumulation. 

The competition of different species within a forest
system, coupled with catastrophe such a forest fire, leads
to a complex system of interactions that have been studied
as a means of developing better management strategies,
among other reasons. Transitions between different
community classes (e.g. rainforest, open sclerophyll
woodland) require vastly different times to complete
(Noble and Slatyer, 1980), so are examples of
asynchronous updating.

Asynchronous Processes in Models

The examples in the previous section suggest that
asynchronous updating is the default, rather than the
exception, in natural multi agent systems. This raises the
question of what update method should be chosen in
models of such systems. This will depend on the purpose
of the model. Asynchronous models may provide more
realistic representations of natural systems than
synchronous models, and may provide a deeper
understanding of system behaviour.

The majority of published models use synchronous
updating. This may be because little is known about

asynchronous updating, and how it may change the
behaviour of the model. Asynchronous updating has been
incorporated in cellular models of bushfire, for example,
by using a list of cells due to ignite (Kourtz and O’Regan
1971), or by adding extra states (Green, 1983). The
asynchronous nature of forest succession has led to the
adoption of the semi−Markov model, (Howard, 1971).
There have also been attempts to investigate the effects of
random asynchronous (RAS) processes in more abstract
models. Not surprisingly, RAS updating changes the
characteristics of a system. For example, Harvey and
Bossomaier (1997) have pointed out that stochastic
updating in RBNs results in the expression of point
attractors, but no cyclic attractors, although they introduce
the notion of loose cyclic attractors. Kanada (1994) has
shown that some one−dimensional CA models, that
generate non−chaotic patterns when updated
synchronously, generate edge of chaos patterns when
randomised. Other researchers have claimed that RAS
models can exhibit all the behaviour normally associated
with synchronous models. For example, Orponen (1997)
has demonstrated that any synchronously updated network
of threshold logic units can be simulated by a network that
has no constraints on the order of updates. However, this
work depends on a carefully crafted network connectivity
that is unlikely to be observed in natural systems.

Cellular Automata Models of Asynchronous
Processes

The relative merits of different updating schemes are not
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Fig. 2. Time state diagrams for Cellular Automata models of different update processes for rule 38.
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Fig. 3. Time state diagrams for Cellular Automata models of different update processes for rule 146.

Figure 1: Time state diagrams for Cellular Automata models of different update processes for rule 38.

behaviour for a time, suggesting a mechanism of
asynchronous updating as in the previous example.

Bushfires are propagated when fuel is heated until it
ignites. The rate of heating depends on the fire intensity,
the distance from the flames, the fuel moisture, and so on.
When a plant ignites, its neighbours ignite
asynchronously, with the order determined by heat
accumulation. 

The competition of different species within a forest
system, coupled with catastrophe such a forest fire, leads
to a complex system of interactions that have been studied
as a means of developing better management strategies,
among other reasons. Transitions between different
community classes (e.g. rainforest, open sclerophyll
woodland) require vastly different times to complete
(Noble and Slatyer, 1980), so are examples of
asynchronous updating.

Asynchronous Processes in Models

The examples in the previous section suggest that
asynchronous updating is the default, rather than the
exception, in natural multi agent systems. This raises the
question of what update method should be chosen in
models of such systems. This will depend on the purpose
of the model. Asynchronous models may provide more
realistic representations of natural systems than
synchronous models, and may provide a deeper
understanding of system behaviour.

The majority of published models use synchronous
updating. This may be because little is known about

asynchronous updating, and how it may change the
behaviour of the model. Asynchronous updating has been
incorporated in cellular models of bushfire, for example,
by using a list of cells due to ignite (Kourtz and O’Regan
1971), or by adding extra states (Green, 1983). The
asynchronous nature of forest succession has led to the
adoption of the semi−Markov model, (Howard, 1971).
There have also been attempts to investigate the effects of
random asynchronous (RAS) processes in more abstract
models. Not surprisingly, RAS updating changes the
characteristics of a system. For example, Harvey and
Bossomaier (1997) have pointed out that stochastic
updating in RBNs results in the expression of point
attractors, but no cyclic attractors, although they introduce
the notion of loose cyclic attractors. Kanada (1994) has
shown that some one−dimensional CA models, that
generate non−chaotic patterns when updated
synchronously, generate edge of chaos patterns when
randomised. Other researchers have claimed that RAS
models can exhibit all the behaviour normally associated
with synchronous models. For example, Orponen (1997)
has demonstrated that any synchronously updated network
of threshold logic units can be simulated by a network that
has no constraints on the order of updates. However, this
work depends on a carefully crafted network connectivity
that is unlikely to be observed in natural systems.

Cellular Automata Models of Asynchronous
Processes

The relative merits of different updating schemes are not
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Fig. 2. Time state diagrams for Cellular Automata models of different update processes for rule 38.
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Fig. 3. Time state diagrams for Cellular Automata models of different update processes for rule 146.
Figure 2: Time state diagrams for Cellular Automata models of different update processes for rule 146.

inary studies are shown below. Figs. 1 and 2 show the
evolution of the CA models for rule 38 and 146. These
rules were chosen for their examples of the possible di-
vergence between the behaviour of different schemes.

For both rules, the random independent scheme and
the random order scheme show similar behaviour, which
appears to be complex. However, after multiple tests us-
ing many rules, both of these schemes always converged
to a point attractor. This is to be expected from the
results of Harvey and Bossomaier (1997). However, the
results shown here suggest that the transients can be
very long.

The synchronous scheme shows cyclic behaviour for
rule 38, and chaotic behaviour for rule 146. This is to
be expected, as its properties are already well known.

The cyclic scheme converges to a cyclic attractor. Af-
ter multiple tests using different rules, the cyclic scheme
always evolved to a cyclic or point attractor. This
scheme never showed any evidence of chaotic behaviour.

The clock scheme seems to show the widest range of
behaviour. For example, in Fig. 1, it shows evidence of
chaotic behaviour when the synchronous scheme shows
cyclic behaviour. In Fig. 2, it shows complex behaviour
converging to a point attractor (all cells white), while
the synchronous scheme shows complex behaviour.

These preliminary results suggest that the properties

of such models are changed by the particular update
scheme chosen. Any researcher attempting to build a
model of a multi agent system should question the type
of updating used, and ensure that an appropriate scheme
is chosen for the system being studied and the uses to
which the model will be put.

A Cellular Automata Model of Self

Synchrony

We now extend the clocked update scheme to show how
self-synchrony, observed in ant colonies and neural tis-
sue, may be easily modeled. Our model is similar to the
Kuramotos model of self-synchronising oscillators (Stro-
gatz 2000), but each cell is connected only to its two
adjacent neighbours.

All experiments were performed with a one dimen-
sional CA having 250 cells and 2 states. The model was
run using a variety of rules, and the network was com-
pletely homogenous. States, clock periods and phases
were all initialised by drawing from a uniform distribu-
tion. At each time step, the frequency ω of each oscilla-
tor is updated according to the phase θ of its neighbours,
using a gain term β:

ωi(t+1) = ωi(t) +β(θi+1(t) − θi(t))+β(θi−1(t) − θi(t)) (1)
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well understood. An important research question is to
determine their characteristics and their suitability for
representing various kinds of multi agent systems. As an
initial survey, we have implemented CA models using
five distinct updating schemes. Source code is available
from http://life.csu.edu.au/~dcornfor/masys.html.

The Clock scheme (Thomas 1979, Low and Lapsley
1999) assigns a timer to each cell. The period of each
timer is set at random, as is the initial phase of the timer.
The model is evolved by incrementing the values of all
timers at each time step, then checking the values. Those
timers that have exceeded the value of their period
variable are updated in order, with new states being
implemented immediately. After a cell has been updated,
its timer is set to zero.

In the Cyclic scheme, a node is chosen at each time
step according to a fixed update order. This order is
decided at random during initialisation of the model. This
follows Kanada (1994).

In the Random Independent scheme (Harvey and
Bossomaier, 1997), one cell is randomly selected for
update at each time step. Subsequent selections are
independent of each other.

The Random Order scheme (Harvey and Bossomaier,
1997), makes a list of all cells at each time step, and sorts
them into a random order. It then uses this list to decide
which cell to update. In this variant, each cell is updated
once only for every time step, but the order of updating is
random.

The Synchronous scheme is included for comparison.
It has been described in many papers, and its properties
are well−known (Wolfram, 1984). At each time step, the
state of each cell is calculated, but held in a temporary
store until all states have been calculated. Then the cells
are all updated to their new state synchronously.

These five schemes were implemented as a one
dimensional CA having 250 cells and 2 states, with each
cell connected to its two neighbours and itself. Further
details are provided in Cornforth et al., (2001). For each
rule, the five models were initialised to random states.
Time space diagrams were obtained, each one
representing the evolution of the model from initialisation
for the first 500 time steps.

A few of the more interesting results from our
preliminary studies are shown below. Figs. 2 and 3 show
the evolution of the CA models for rule 38 and 146. These
rules were chosen for their examples of the possible
divergence between the behaviour of different schemes.

For both rules, the random independent scheme and the
random order scheme show similar behaviour, which
appears to be complex. However, after multiple tests
using many rules, both of these schemes always
converged to a point attractor. This is to be expected from
the results of Harvey and Bossomaier (1997). However,
the results shown here suggest that the transients can be
very long.

The synchronous scheme shows cyclic behaviour for
rule 38, and chaotic behaviour for rule 146. This is to be
expected, as its properties are already well known.

The cyclic scheme converges to a cyclic attractor. After
multiple tests using different rules, the cyclic scheme
always evolved to a cyclic or point attractor. This scheme
never showed any evidence of chaotic behaviour.

The clock scheme seems to show the widest range of
behaviour. For example, in Fig. 2, it shows evidence of
chaotic behaviour when the synchronous scheme shows
cyclic behaviour. In Fig. 3, it shows complex behaviour
converging to a point attractor (all cells white), while the
synchronous scheme shows complex behaviour.

These preliminary results suggest that the properties of
such models are changed by the particular update scheme
chosen. Any researcher attempting to build a model of a
multi agent system should question the type of updating
used, and ensure that an appropriate scheme is chosen for
the system being studied and the uses to which the model
will be put.

A Cellular Automata Model of Self Synchrony

We now extend the clocked update scheme to show how
self−synchrony, observed in ant colonies and neural
tissue, may be easily modeled. Our model is similar to the
Kuramotos model of self−synchronising oscillators
(Strogatz 2000), but each cell is connected only to its two
adjacent neighbours.

All experiments were performed with a one
dimensional CA having 250 cells and 2 states. The model

(a) (b) (c) (d)
Figure 4. Time space diagrams showing four stages in the evolution of the self−synchronising model.
Initialisation is shown in (a), the next stage is shown in (b) and so on. Modules appear as vertical regions
separated by vertical lines
Figure 3: Time space diagrams showing four stages of the self-syncronising model. Initialisation is shown in (a), the
next stage is shown in (b) and so on. Modules appear a vertical regions separated by vertical lines.

Results are shown in Fig. 3. In the early stages of
the evolution of the model (a), cells states are randomly
distributed, and state transitions occur independently of
each other. However, further evolution of the model (b to
d) reveals the formation of clusters or modules of cells
that update their states together. Modules appear as
vertical sections of cells displaying a similar pattern. The
cells in a module have achieved synchronisations within
the module. This synchronisation persists for some time,
and then the modules break apart and re-form. This
may be helpful in explaining the presence of patches of
burning forest during bushfires, synchronous behaviour
in ant colonies, and the ability of neural tissue to form
transient resonant modules.

Discussion

A consideration of some biological systems reveals that
state updating in such systems is usually asynchronous.
This implies that anyone building models of such systems
should at least consider using asynchronous updating.

A review of the literature reveals that different up-
dating schemes do exist, including random and ordered
asynchronous updating.

Implementing these schemes in a simple Cellular Au-
tomata model show that different schemes produce dif-
ferent global behaviour. This implies that anyone build-
ing models should be aware of these differences, and
choose an updating scheme that is appropriate to the
model being constructed, and its purpose.

A modification of one of these schemes shows how easy
it is to model self-synchronisation once asynchronous up-
dating is used.

This model demonstrates a possible mechanism for the
emergence of modularity in complex systems. The im-
plications of this include a possible explanation of the
origin of some types of modularity in living systems.
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