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Abstract

We describe an interactive search algorithm inspired by
the immune system. The algorithm learns what parts
of the search space are not useful to help a user ex-
plore large parameter spaces efficiently. The algorithm
is capable of finding consensus solutions for parties with
different selection criteria. A simple implementation of
the algorithm applied to selecting Biomorphs (Dawkins
1986) is presented.

Introduction

In this paper we illustrate how an immune system-
inspired filtering algorithm described in (Chao & For-
rest 2002) can be applied to the filtering and generation
of art. When the immune system is exposed to a novel
pathogen, it learns to recognize it in what is called the
primary response, and it remembers the pattern so that
subsequent infections can be eliminated more efficiently
in the secondary response. Analogously, an artificial im-
mune system can be viewed as “protecting” users from
undesirable data. We propose constructing an artificial
immune system that learns what kinds of data patterns
are unacceptable and then prevents exposure to simi-
lar data in the future. This approach scales to multiple
users by using the superset of the undesirable data of
many users to filter data. The data that survive this
censoring is the set that could satisfy everyone. These
solutions are useful for situations in which one solution
must satisfy several people at once, such as music that
is broadcast to an audience or artwork that is displayed
in public spaces.

We demonstrate the principles of this idea by ap-
plying it to the generation of simple figures known as
Biomorphs (Dawkins 1986). The system is capable of
learning which regions of Biomorph parameter space pro-
duce images that are displeasing to a particular user and
can generate diverse candidate solutions of high quality.
Furthermore, the solutions produced by combining the
profiles of a small group of users are likely to be pleasing
to all of the group members.

An Aesthetic Immune System

An aesthetic immune system is a filter between users and
a “stream” of art and eliminates undesired art before it
can reach the user. Like the adaptive immune system,
it “learns” from experience. If a user labels a work of
art as “bad,” the system will remember this and prevent
this work from being shown to the user in the future.
It would not be practical for the user to evaluate every
item manually, so the algorithm must generalize. If the
user dislikes a certain item, it is likely that the user will
dislike similar items as well.

Aesthetic space is a framework for grouping “similar”
works of art. In this space, the distance between the
locations of two works of art is proportional to their
similarity. Thus, similar works are close to each other
while dissimilar works are far apart. For example, oil
paintings of the Renaissance could occupy points in one
part of the space, the paintings of the Enlightenment
era might not be too far away, while the work of Ab-
stract Expressionists would be quite distant from both
of these. Clearly this space is impossible to construct
accurately due to the subjective nature of similarity in
the realm of aesthetics. However, when generating art
algorithmically, we will assume that for many systems
similar parameters produce aesthetically similar images.

If a user rejects one work, he or she will probably
dislike most of its neighbors in aesthetic space. Therefore
the system creates a negative detector that covers a small
portion of space surrounding each rejected work. The
detectors will behave like lymphocytes in the immune
system, recognizing anything that is too similar to their
pre-programmed targets. If a work is not rejected by any
of the detectors, it is allowed to “survive.” Therefore,
the user should never be presented a new work that is
similar to one explicitly rejected in the past.

The works of art that can pass through the system are
not similar to previously rejected ones, but they are not
guaranteed to be “good.” If the user rejects one of these,
the system will form a new detector for it, which will pre-
vent similar “bad” works from being seen in the future.
The untrained system with no detectors gradually con-
structs a profile of the user’s tastes as it sees examples
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of art that the user rejects. Eventually, the accumulated
detectors will form a model of the user’s preferences and
shield the user from a broad range of undesirable art.

To use an aesthetic immune system to help a user
explore a wide variety of potentially good solutions, a
random number generator can supply a stream of ran-
dom candidate solutions to it. The system would filter
out candidates that are likely to be bad, and when fully
trained (if this is possible), it is a perpetual generator
of novel but satisfactory art. Note that it does not at-
tempt to find optimal solutions, so other techniques may
be used to refine solutions presented to the user.

An important consequence of negative detection is
that detectors can be independently generated by users
with different judgment criteria. The areas that are not
excluded by the superset of their negative detectors can
define the regions of “consensus” solutions, or solutions
that are satisfactory to everyone. Many users can gen-
erate “bad art” detectors independently, and when the
detector sets of many users are combined, the system will
generate works that none of the users will dislike. One
can think of each user’s detector set acting as a sieve,
blocking the passage of art that is disagreeable to that
user. The solutions that pass through all the sieves are
the consensus solutions. This method could potentially
satisfy the aesthetic demands of multiple users efficiently
and accurately, even if the users are specifying their pref-
erences asynchronously and incrementally. The quality
of the consensus solutions depends on the domain and
the heterogeneity of the users. If the users have conflict-
ing interests, consensus solutions might not exist.

Related work

Evolutionary art (evoart) usually relies on humans to
provide the feedback needed by the computer to guide
the “evolution” of a work of computer generated art.
Typically, the user iteratively refines a work by select-
ing a subset of favorite works out of a small set, which
are variants or combinations of the user’s favorites from
the previous time step. After many iterations, the qual-
ity of the works can improve. This process of “evolv-
ing” art is sometimes called aesthetic selection. Dawkins
was the first to implement evolutionary art on a com-
puter (Dawkins 1986). In his system, the user explores
the space of images called “Biomorphs” in the iterative
manner described above.

The aesthetic immune system approach has several ad-
vantages over the evolutionary approach. First, evoart
systems usually require a user to compare many mem-
bers of a population at once to pick a favorite, while
an immunologically-based system does not. For some
systems, such as the generation of musical phrases, it
is difficult to evaluate many individuals at once (Nelson
1993). Second, the evolutionary process converges to sin-
gle works of art, while the immunological approach eval-

uates the whole of parameter space and can be a source
of perpetual novelty. Third, in order to produce innova-
tive works, evolutionary systems often combine works of
art (Sims 1991). The programmer is faced with the diffi-
cult task of defining operators to mix the “genotypes” of
works in a manner such that the offspring’s “phenotype”
exhibits desirable traits of its parents. In some cases,
the results are unpredictable and displeasing, suggest-
ing that more complex combination rules are required.
A trained aesthetic immune system can generate a very
large range of aesthetically pleasing art without the use
of a difficult-to-define art combination operator. This
may be crucial in collaborative evoart, in which many
users cooperate to generate works of art. Simply com-
bining the favorite works of different users might yield
unsatisfactory results. If a fan of Salvador Daĺı’s surre-
alist canvases were to meet a fan of Norman Rockwell’s
sentimental and more realistic style, a painting that com-
bined the two painters’ tendencies would probably be
unsatisfying to both. A better solution might be to in-
troduce both to something completely different, like the
paintings of Paul Klee. This is the sort of solution an
aesthetic immune system would be capable of proposing.

Application to Biomorphs

We applied the immunological framework to the ex-
ploration of Dawkins’ Biomorphs (Dawkins 1986). A
Biomorph is a recursively drawn figure defined by a nine-
digit “genotype.” The digits, all but one of which are
allowed to take the values between −9 and 9 inclusively,
are parameters that affect the appearance of the final
image, or “phenotype.” The final digit of the genotype,
which defines the level of recursion used in drawing the
Biomorph, is restricted to values between 2 and 9. The
following sections describe how to implement an aes-
thetic immune system to help users find aesthetically
pleasing regions of the Biomorph genotype space.

Defining the aesthetic distance

The first step is to define the distance between any two
solutions. Fortunately, small changes in Biomorph pa-
rameters (the genotype) usually result in small pheno-
typic changes, so we were able to use genotype space as
a proxy for the true aesthetic space. That is, Biomorphs
with similar genotypes are assumed to look similar, while
the appearance of Biomorphs with very different geno-
types is assumed uncorrelated. For convenience, we de-
fine the distance in genotype space to be the maximum
arithmetic difference between any two corresponding dig-
its of the two genotypes, which is the Minkowski metric
L∞(a, b) = [

∑
i (|ai − bi|

∞)]1/∞, where a and b are the
strings being compared and ai and bi are the ith ele-
ment of a and b. For example, the distance between the
two genotypes (0,0,0,0,1,8,1,1,2) and (7,3,6,2,1,1,3,3,2) is
7 because that is the maximum difference between the
corresponding digits of the two strings (at both positions
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1 and 6). Other distance measures are possible, such as
the sum of the differences between corresponding posi-
tions in the genotype.

For some domains, one would not want to generate
new works, such as with a collection of already existing
work. In such cases, the immunological approach could
be used to prevent the retrieval of entries that are too
similar to previously rejected works. There is a large
body of research on the problem of quantifying similar-
ity between data, including content-based classification,
metadata-based classification, and collaborative filtering
techniques.

Defining the detectors

A detector should be large enough so that the user does
not need to define “too many” of them but not so large
that they eliminate as many good solutions as bad ones.
We will define a detector of radius r to cover all geno-
types within distance r from the center of the detector.
The neighborhood size of a detector is the number of
distinct locations in space that it covers. The detector
neighborhood should cover a “large enough” portion of
the total parameter space such that a reasonable number
of detectors could cover a large portion of the total geno-
type space. It may be fruitful to augment the immuno-
logical approach with pattern classification techniques to
more efficiently cover parameter space.

For the Biomorph user experiment, described below,
we used large detectors in order to minimize the amount
of time it took the subjects to cover a significant portion
of space. We chose a detector size such that the average
user could create enough detectors to fill about half of
Biomorph parameter space in under ten minutes. The
large detector size affects the results quantitatively, but
hopefully not qualitatively. It is probably impossible to
guarantee that no good genotype will be censored by a
detector, but we would like to minimize this possibility.
If the transition between high and low quality solutions
is not too abrupt, there could be regions of expendable
intermediate-quality solutions between them in parame-
ter space. If the user is instructed to not reject solutions
of low but acceptable quality, the detectors are less likely
to interfere with good solutions.

We set the detector radius to be 6 for all parameters
except for the last one, which we set to 2. Small changes
in the last parameter greatly affect the appearance of
Biomorphs, so a smaller radius is appropriate. Figure 1
shows a random Biomorph and various others that fall
within its detector radius. Based on this and several
other examples, we concluded that Biomorphs that are
within the range of a single detector are qualitatively
similar and assume that if a genotype yields an undesir-
able phenotype, then most genotypes within its detector
are likely to be undesirable as well.

Figure 1: A sample from the range of Biomorphs covered
by a single detector. The boxed figure in the upper-left
is the detector’s center, which is (3,6,6,-5,3,-2,-6,-5,8).

Experiment

Seven volunteers participated in a user study to deter-
mine the feasibility of the aesthetic immune system. All
used a program to create their own Biomorph detec-
tor sets and were retested several days later to deter-
mine the effectiveness of system’s detectors. To create a
Biomorph detector set, a computer program displayed
a series of randomly generated Biomorphs. For each
Biomorph shown, the subject was given the option to
reject it, creating a detector based on its genotype, or to
accept it, which does not change the state of the detector
set. The detectors were put to use as they were created
to filter out new Biomorphs similar to the rejected ones.
Thus, the aesthetic quality of images was expected to im-
prove during a session because the increasing number of
detectors could prevent more regions of “bad” genotypes
from being displayed. The subjects were asked to rate
Biomorphs until about 50% of the parameter space was
covered by detectors. To test the effectiveness of the
detectors, the subjects were asked to evaluate a series
of 150 Biomorphs from three sets: random Biomorphs,
Biomorphs that survived censoring by the subject’s own
detectors, and Biomorphs that survived the censoring by
the superset of many subjects’ detectors. The number of
rejected Biomorphs from each set was recorded, and we
assume user satisfaction to be inversely correlated with
the number of rejections.

This test was performed using all seven subjects and
the superset of all subjects’ detectors to determine the
efficacy of the consensus solutions. It was repeated using
only three of the subjects and their detectors to deter-
mine the effects of group size on the quality of consensus
solutions. The consensus solutions shown in the latter
test were thus censored using only three sets of detectors
instead of seven.
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a)
1 2 3 4 5 6 7

none 52% 72% 50% 30% 58% 36% 54%
self 38% 48% 44% 32% 66% 30% 44%
all 46% 62% 38% 48% 64% 38% 60%

b)
1 2 3

none 62% 52% 50%
self 56% 48% 28%
all 44% 42% 30%

Table 1: The user study results. The entries represent
the percentage of Biomorph images rejected by a user
for a particular detector set. Each column represents the
data from one subject. The detector sets, indicated by
the labels “none”, “self” and “all”, are no detectors, the
subject’s own detectors, and the superset of all subjects’
detectors respectively. The results from testing all seven
users are summarized in a), and the the results from the
subset of three are shown in b).

Results

The results of the experiments are summarized in Ta-
ble 1. The system appeared to learn the Biomorph pref-
erences of individual users to a statistically significant
degree. For the testing involving all seven users, the re-
jection rate for the random Biomorphs was higher than
that for Biomorphs that were filtered using a subject’s
own detectors (> 95% significance using the Wilcoxon
signed-rank test). For single users, the system clearly
reduced the number of unacceptable solutions, thus im-
proving the average quality of solutions presented to an
individual. We believe that the system’s performance
could be improved dramatically for motivated users who
are willing to invest more time to build their personal
detector sets (e.g. for music, movies, or books that they
like.) Using smaller detectors and covering a larger por-
tion of the parameter space would likely increase the
accuracy of user preferences. More importantly, a more
accurate aesthetic distance measure needs to be defined.

Combining user preferences worked well for the set of
three users but not for all seven. For the testing in-
volving the seven users, the difference between rejection
rates of random Biomorphs and those censored by the su-
perset of all seven subjects’ detectors is not statistically
significant. For the testing involving only three of the
seven subjects, the rejection rates for the group-selected
Biomorphs were approximately the same or lower than
the ones selected using their own detectors. The con-
sensus solutions for three users appeared to be of equal
or greater quality than the solutions generated for the
individuals alone, while the solutions for all seven users
appeared to be of low quality. The results suggest that
it is hard to satisfy a large number of users and that
consensus solutions may not even exist for groups with

members with different preferences. The number of users
that an aesthetic immune system can accommodate is
likely dependent on the particular problem domain and
the similarity of the users. If the users have conflicting
preferences or if the problem domain is highly subjec-
tive, then consensus solutions would be hard to find.
However, if user preferences are orthogonal to one an-
other, then a large range of good consensus solutions
could be discovered using this method. Inaccuracies in
the user profiles can also lower the average quality of
solutions found. If the profiles for all users were perfect
and complete, solutions that are not censored by any
profile would satisfy everyone. However, the Biomorph
profiles were approximate and incomplete, so combining
profiles did not always work.

Conclusions

We have presented an algorithm for identifying regions of
interest in a parameter space using the subjective judg-
ments of multiple individuals. It remains to be seen if
the consensus solutions are more likely to be novel and
innovative or bland and inoffensive. It would be easy to
retrofit many existing evoart algorithms to use the im-
munological approach. We believe that this will reveal
interesting parts of the parameter spaces that were not
seen before due to the inefficiency of mutational search
and the local aesthetic fitness optima that can stall evo-
lution. The search for these regions could be accelerated
by having multiple users create a common pool of de-
tectors. If the set of cooperating users is large and rep-
resentative of the tastes of the general public, the final
result might be a system that generates art that many
can appreciate.
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